Biology_Alevel_Ocr
-
4-1-communicable-diseases-disease-prevention-and-the-immune-system16 主题
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-1-2-transmission-of-communicable-pathogens
-
4-1-3-plant-defences-against-pathogens
-
4-1-4-non-specific-immune-responses
-
4-1-5-phagocytes
-
4-1-6-blood-cells
-
4-1-7-the-t-lymphocyte-response
-
4-1-8-the-b-lymphocyte-response
-
4-1-9-primary-and-secondary-immune-responses
-
4-1-10-antibodies
-
4-1-11-opsonins-agglutinins-and-anti-toxins
-
4-1-12-types-of-immunity
-
4-1-13-autoimmune-diseases
-
4-1-14-principles-of-vaccination
-
4-1-15-sources-of-medicine
-
4-1-16-antibiotics
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-2-biodiversity10 主题
-
4-2-1-biodiversity
-
4-2-2-sampling-to-determine-biodiversity
-
4-2-3-practical-investigating-biodiversity-using-sampling
-
4-2-4-measuring-species-richness-and-species-evenness
-
4-2-5-simpsons-index
-
4-2-6-genetic-diversity
-
4-2-7-factors-affecting-biodiversity
-
4-2-8-reasons-for-maintaining-biodiversity
-
4-2-9-methods-of-maintaining-biodiversity
-
4-2-10-conservation-agreements
-
4-2-1-biodiversity
-
4-3-classification-and-evolution15 主题
-
4-3-1-classification-of-species
-
4-3-2-binomial-system
-
4-3-3-classification-of-the-three-domains
-
4-3-4-classification-of-the-five-kingdoms
-
4-3-5-classification-and-phylogeny
-
4-3-6-evidence-of-evolution
-
4-3-7-types-of-variation
-
4-3-8-standard-deviation
-
4-3-9-variation-t-test-method
-
4-3-10-variation-t-test-worked-example
-
4-3-11-spearmans-rank-correlation
-
4-3-12-adaptation
-
4-3-13-natural-selection
-
4-3-14-evolution-of-resistance
-
4-3-15-consequences-of-resistance
-
4-3-1-classification-of-species
-
5-1-communication-and-homeostasis4 主题
-
5-2-excretion10 主题
-
5-2-1-the-importance-of-excretion
-
5-2-2-the-mammalian-liver-structure
-
5-2-3-the-mammalian-liver-function
-
5-2-4-the-liver-under-the-microscope
-
5-2-5-the-mammalian-kidney-structure
-
5-2-6-the-mammalian-kidney-function
-
5-2-7-the-kidney-under-the-microscope
-
5-2-8-osmoregulation
-
5-2-9-kidney-failure
-
5-2-10-excretory-products-and-medical-diagnosis
-
5-2-1-the-importance-of-excretion
-
5-3-neuronal-communication9 主题
-
5-4-hormonal-communication4 主题
-
5-5-plant-and-animal-responses16 主题
-
5-5-1-plant-responses
-
5-5-2-investigating-phototropism-and-geotropism
-
5-5-3-plant-hormones
-
5-5-4-auxins-and-apical-dominance
-
5-5-5-gibberellin
-
5-5-6-practical-effect-of-plant-hormones-on-growth
-
5-5-7-commercial-use-of-plant-hormones
-
5-5-8-mammalian-nervous-system
-
5-5-9-the-human-brain
-
5-5-10-reflex-actions
-
5-5-11-coordination-of-responses
-
5-5-12-factors-affecting-heart-rate
-
5-5-13-investigating-factors-affecting-heart-rate
-
5-5-14-mammalian-muscle-structure
-
5-5-15-transmission-across-a-neuromuscular-junction
-
5-5-16-the-sliding-filament-model
-
5-5-1-plant-responses
-
5-6-photosynthesis10 主题
-
5-6-1-photosynthesis-and-respiration
-
5-6-2-chloroplast-structure-and-function
-
5-6-3-photosynthetic-pigments
-
5-6-4-practical-investigating-photosynthetic-pigments-with-chromatography
-
5-6-5-the-light-dependent-stage
-
5-6-6-using-the-products-of-the-light-dependent-reaction
-
5-6-7-the-light-independent-stage
-
5-6-8-uses-of-triose-phosphate
-
5-6-9-factors-affecting-the-rate-of-photosynthesis
-
5-6-10-practical-investigating-factors-affecting-the-rate-of-photosynthesis
-
5-6-1-photosynthesis-and-respiration
-
5-7-respiration14 主题
-
5-7-14-practical-respirometer
-
5-7-1-the-need-for-cellular-respiration
-
5-7-2-structure-of-the-mitochondrion
-
5-7-3-the-four-stages-in-aerobic-respiration
-
5-7-4-glycolysis
-
5-7-5-the-link-reaction
-
5-7-6-the-krebs-cycle
-
5-7-7-the-role-of-coenzymes
-
5-7-8-oxidative-phosphorylation
-
5-7-9-anaerobic-respiration
-
5-7-10-energy-yield-of-aerobic-vs-anaerobic-respiration
-
5-7-11-practical-investigating-the-rate-of-respiration
-
5-7-12-respiratory-substrates
-
5-7-13-respiratory-quotient-rq
-
5-7-14-practical-respirometer
-
6-1-cellular-control7 主题
-
6-2-patterns-of-inheritance13 主题
-
6-2-1-key-terms-in-genetics
-
6-2-2-variation-phenotype
-
6-2-3-variation-sexual-reproduction
-
6-2-4-predicting-inheritance-monohybrid-crosses
-
6-2-5-predicting-inheritance-dihybrid-crosses
-
6-2-6-predicting-inheritance-identifying-linkage
-
6-2-7-predicting-inheritance-identifying-epistasis
-
6-2-8-predicting-inheritance-chi-squared-test
-
6-2-9-continuous-and-discontinuous-variation
-
6-2-10-factors-affecting-evolution
-
6-2-11-the-hardy-weinberg-principle
-
6-2-12-isolation-and-speciation
-
6-2-13-artificial-selection
-
6-2-1-key-terms-in-genetics
-
6-3-manipulating-genomes11 主题
-
6-3-1-dna-sequencing
-
6-3-2-comparing-genomes
-
6-3-3-non-coding-dna-and-regulatory-genes
-
6-3-4-synthetic-biology
-
6-3-5-polymerase-chain-reaction
-
6-3-6-electrophoresis
-
6-3-7-dna-profiling
-
6-3-8-genetic-engineering
-
6-3-9-genetic-engineering-techniques
-
6-3-10-uses-of-genetic-engineering
-
6-3-11-gene-therapy
-
6-3-1-dna-sequencing
-
6-4-cloning-and-biotechnology14 主题
-
6-4-1-natural-clones-in-plants
-
6-4-2-producing-cuttings
-
6-4-3-production-of-artificial-clones-in-plants
-
6-4-4-uses-of-plant-cloning
-
6-4-5-natural-clones-in-animals
-
6-4-6-production-of-artificial-clones-in-animals
-
6-4-7-uses-of-animal-cloning
-
6-4-8-microorganisms-and-biotechnology
-
6-4-9-microorganisms-and-food-production
-
6-4-10-culturing-microorganisms
-
6-4-11-batch-and-continuous-fermentation
-
6-4-12-standard-growth-curve-of-microorganisms
-
6-4-13-factors-affecting-the-growth-of-microorganisms
-
6-4-14-immobilised-enzymes-in-biotechnology
-
6-4-1-natural-clones-in-plants
-
6-5-ecosystems7 主题
-
6-6-populations-and-sustainability6 主题
-
1-1-practical-skills-written-assessment7 主题
-
1-2-practical-skills-endorsement-assessment16 主题
-
1-2-1-practical-ethical-use-of-organisms
-
1-2-2-practical-aseptic-techniques
-
1-2-3-practical-dissection-of-gas-exchange-surfaces-in-fish-and-insects
-
1-2-4-drawing-cells-from-blood-smears
-
1-2-5-practical-investigating-biodiversity-using-sampling
-
1-2-6-practical-data-loggers-and-computer-modelling
-
1-2-7-practical-investigating-the-rate-of-diffusion
-
1-2-8-practical-investigating-water-potential
-
1-2-9-practical-factors-affecting-membrane-structure-and-permeability
-
1-2-10-biochemical-tests-reducing-sugars-and-starch
-
1-2-11-biochemical-tests-lipids
-
1-2-12-biochemical-tests-proteins
-
1-2-13-chromatography
-
1-2-14-serial-dilutions
-
1-2-15-practical-investigating-the-rate-of-transpiration
-
1-2-16-practical-using-a-light-microscope
-
1-2-1-practical-ethical-use-of-organisms
-
2-1-cell-structure9 主题
-
2-2-biological-molecules17 主题
-
2-2-1-properties-of-water
-
2-2-2-monomers-and-polymers
-
2-2-3-monosaccharides
-
2-2-4-the-glycosidic-bond
-
2-2-5-polysaccharides
-
2-2-6-biochemical-tests-reducing-sugars-and-starch
-
2-2-7-lipids-and-ester-bonds
-
2-2-8-lipids-structure-and-function
-
2-2-9-biochemical-tests-lipids
-
2-2-10-amino-acids-and-peptide-bonds
-
2-2-11-protein-structure
-
2-2-12-globular-proteins
-
2-2-13-fibrous-proteins
-
2-2-14-inorganic-ions
-
2-2-15-biochemical-tests-proteins
-
2-2-16-finding-the-concentration-of-a-substance
-
2-2-17-chromatography
-
2-2-1-properties-of-water
-
2-3-nucleotides-and-nucleic-acids8 主题
-
2-4-enzymes9 主题
-
2-4-1-the-role-of-enzymes
-
2-4-2-enzyme-action
-
2-4-3-enzyme-activity-ph
-
2-4-4-enzyme-activity-temperature
-
2-4-5-enzyme-activity-enzyme-concentration
-
2-4-6-enzyme-activity-substrate-concentration
-
2-4-7-enzyme-activity-enzyme-inhibitors
-
2-4-8-coenzymes-cofactors-and-prosthetic-groups
-
2-4-9-practical-measuring-enzyme-activity
-
2-4-1-the-role-of-enzymes
-
2-5-biological-membranes9 主题
-
2-5-1-the-cell-surface-membrane
-
2-5-2-membrane-structure-and-permeability
-
2-5-3-diffusion-and-facilitated-diffusion
-
2-5-4-practical-investigating-the-rate-of-diffusion
-
2-5-5-active-transport
-
2-5-6-endocytosis-and-exocytosis
-
2-5-7-osmosis
-
2-5-8-osmosis-in-animal-and-plant-cells
-
2-5-9-practical-investigating-water-potential
-
2-5-1-the-cell-surface-membrane
-
2-6-cell-division-cell-diversity-and-cellular-organisation11 主题
-
2-6-1-the-cell-cycle
-
2-6-2-the-stages-of-mitosis
-
2-6-3-identifying-mitosis-in-plant-cells
-
2-6-4-the-significance-of-mitosis
-
2-6-5-the-stages-of-meiosis
-
2-6-6-the-significance-of-meiosis
-
2-6-7-specialised-cells
-
2-6-8-the-organisation-of-cells
-
2-6-9-stem-cells
-
2-6-10-stem-cells-in-animals-and-plants
-
2-6-11-the-use-of-stem-cells
-
2-6-1-the-cell-cycle
-
3-1-exchange-surfaces7 主题
-
3-2-transport-in-animals12 主题
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-2-2-circulatory-systems
-
3-2-3-blood-vessels
-
3-2-4-tissue-fluid
-
3-2-5-the-mammalian-heart
-
3-2-6-practical-mammalian-heart-dissection
-
3-2-7-the-cardiac-cycle
-
3-2-8-cardiac-output
-
3-2-9-heart-action-initiation-and-control
-
3-2-10-electrocardiograms-ecgs
-
3-2-11-the-role-of-haemoglobin
-
3-2-12-adult-and-fetal-haemoglobin
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-3-transport-in-plants11 主题
-
3-3-1-the-need-for-transport-systems-in-plants
-
3-3-2-the-xylem-and-phloem
-
3-3-3-the-xylem
-
3-3-4-the-phloem
-
3-3-5-transverse-sections-stems-roots-and-leaves
-
3-3-6-the-process-of-transpiration
-
3-3-7-transpiration-in-plants
-
3-3-8-practical-investigating-the-rate-of-transpiration
-
3-3-9-translocation
-
3-3-10-the-mass-flow-hypothesis
-
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants
-
3-3-1-the-need-for-transport-systems-in-plants
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants
The Adaptations of Xerophytic & Hydrophytic Plants
-
Xerophytes (from the Greek xero for ‘dry’) are plants that are adapted to dry and arid conditions
-
Xerophytes have physiological and structural (xeromorphic) adaptations to maximise water conservation
Xeromorphic Features Table



Photomicrograph and annotated drawing showing the xeromorphic features of a leaf of Ammophilia arenaria (Marram grass)
Hydrophytes
-
Plants that are adapted to living in freshwater are known as hydrophytes
-
They have evolved specific adaptations that enable them to deal with the challenges posed by living in such an environment
-
Excess water uptake is not a major concern for plants as their cells possess a cell wall
-
The cell wall prevents too much water from being absorbed
-
-
The abundance of water in the surrounding environment means there is little need for water transport mechanisms or adaptations that reduce water loss
-
The main challenge that hydrophytes face is receiving enough carbon dioxide during the day and enough oxygen during the night
-
Water contains less oxygen and carbon dioxide than the air
-
-
Adaptations that are commonly seen in hydrophytes:
-
Floating leaves: the leaves are thin, flat and have large air spaces inside to give them buoyancy. This keeps them close to the surface of the water where there is more light for photosynthesis
-
Thin waterproof waxy cuticle: it is very thin as there is little need to prevent water loss
-
Stomata located on the upper surface of the leaves: this allows for gas exchange to occur with the air instead of the water
-
Reduced root system: only small roots are required as they can also extract nutrients from the surrounding water through their tissues
-
Reduced veins in the leaves: the xylem is significantly reduced as there is no need to transport water throughout the plant
-
-
A common hydrophyte is the water lily

Adaptations of a hydrophyte
Examiner Tips and Tricks
Remember not all leaves will have every feature listed above so if you are looking at an unfamiliar image consider whether the adaptations you can see will help reduce water being lost from the leaf.