Biology_Alevel_Ocr
-
4-1-communicable-diseases-disease-prevention-and-the-immune-system16 主题
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-1-2-transmission-of-communicable-pathogens
-
4-1-3-plant-defences-against-pathogens
-
4-1-4-non-specific-immune-responses
-
4-1-5-phagocytes
-
4-1-6-blood-cells
-
4-1-7-the-t-lymphocyte-response
-
4-1-8-the-b-lymphocyte-response
-
4-1-9-primary-and-secondary-immune-responses
-
4-1-10-antibodies
-
4-1-11-opsonins-agglutinins-and-anti-toxins
-
4-1-12-types-of-immunity
-
4-1-13-autoimmune-diseases
-
4-1-14-principles-of-vaccination
-
4-1-15-sources-of-medicine
-
4-1-16-antibiotics
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-2-biodiversity10 主题
-
4-2-1-biodiversity
-
4-2-2-sampling-to-determine-biodiversity
-
4-2-3-practical-investigating-biodiversity-using-sampling
-
4-2-4-measuring-species-richness-and-species-evenness
-
4-2-5-simpsons-index
-
4-2-6-genetic-diversity
-
4-2-7-factors-affecting-biodiversity
-
4-2-8-reasons-for-maintaining-biodiversity
-
4-2-9-methods-of-maintaining-biodiversity
-
4-2-10-conservation-agreements
-
4-2-1-biodiversity
-
4-3-classification-and-evolution15 主题
-
4-3-1-classification-of-species
-
4-3-2-binomial-system
-
4-3-3-classification-of-the-three-domains
-
4-3-4-classification-of-the-five-kingdoms
-
4-3-5-classification-and-phylogeny
-
4-3-6-evidence-of-evolution
-
4-3-7-types-of-variation
-
4-3-8-standard-deviation
-
4-3-9-variation-t-test-method
-
4-3-10-variation-t-test-worked-example
-
4-3-11-spearmans-rank-correlation
-
4-3-12-adaptation
-
4-3-13-natural-selection
-
4-3-14-evolution-of-resistance
-
4-3-15-consequences-of-resistance
-
4-3-1-classification-of-species
-
5-1-communication-and-homeostasis4 主题
-
5-2-excretion10 主题
-
5-2-1-the-importance-of-excretion
-
5-2-2-the-mammalian-liver-structure
-
5-2-3-the-mammalian-liver-function
-
5-2-4-the-liver-under-the-microscope
-
5-2-5-the-mammalian-kidney-structure
-
5-2-6-the-mammalian-kidney-function
-
5-2-7-the-kidney-under-the-microscope
-
5-2-8-osmoregulation
-
5-2-9-kidney-failure
-
5-2-10-excretory-products-and-medical-diagnosis
-
5-2-1-the-importance-of-excretion
-
5-3-neuronal-communication9 主题
-
5-4-hormonal-communication4 主题
-
5-5-plant-and-animal-responses16 主题
-
5-5-1-plant-responses
-
5-5-2-investigating-phototropism-and-geotropism
-
5-5-3-plant-hormones
-
5-5-4-auxins-and-apical-dominance
-
5-5-5-gibberellin
-
5-5-6-practical-effect-of-plant-hormones-on-growth
-
5-5-7-commercial-use-of-plant-hormones
-
5-5-8-mammalian-nervous-system
-
5-5-9-the-human-brain
-
5-5-10-reflex-actions
-
5-5-11-coordination-of-responses
-
5-5-12-factors-affecting-heart-rate
-
5-5-13-investigating-factors-affecting-heart-rate
-
5-5-14-mammalian-muscle-structure
-
5-5-15-transmission-across-a-neuromuscular-junction
-
5-5-16-the-sliding-filament-model
-
5-5-1-plant-responses
-
5-6-photosynthesis10 主题
-
5-6-1-photosynthesis-and-respiration
-
5-6-2-chloroplast-structure-and-function
-
5-6-3-photosynthetic-pigments
-
5-6-4-practical-investigating-photosynthetic-pigments-with-chromatography
-
5-6-5-the-light-dependent-stage
-
5-6-6-using-the-products-of-the-light-dependent-reaction
-
5-6-7-the-light-independent-stage
-
5-6-8-uses-of-triose-phosphate
-
5-6-9-factors-affecting-the-rate-of-photosynthesis
-
5-6-10-practical-investigating-factors-affecting-the-rate-of-photosynthesis
-
5-6-1-photosynthesis-and-respiration
-
5-7-respiration14 主题
-
5-7-14-practical-respirometer
-
5-7-1-the-need-for-cellular-respiration
-
5-7-2-structure-of-the-mitochondrion
-
5-7-3-the-four-stages-in-aerobic-respiration
-
5-7-4-glycolysis
-
5-7-5-the-link-reaction
-
5-7-6-the-krebs-cycle
-
5-7-7-the-role-of-coenzymes
-
5-7-8-oxidative-phosphorylation
-
5-7-9-anaerobic-respiration
-
5-7-10-energy-yield-of-aerobic-vs-anaerobic-respiration
-
5-7-11-practical-investigating-the-rate-of-respiration
-
5-7-12-respiratory-substrates
-
5-7-13-respiratory-quotient-rq
-
5-7-14-practical-respirometer
-
6-1-cellular-control7 主题
-
6-2-patterns-of-inheritance13 主题
-
6-2-1-key-terms-in-genetics
-
6-2-2-variation-phenotype
-
6-2-3-variation-sexual-reproduction
-
6-2-4-predicting-inheritance-monohybrid-crosses
-
6-2-5-predicting-inheritance-dihybrid-crosses
-
6-2-6-predicting-inheritance-identifying-linkage
-
6-2-7-predicting-inheritance-identifying-epistasis
-
6-2-8-predicting-inheritance-chi-squared-test
-
6-2-9-continuous-and-discontinuous-variation
-
6-2-10-factors-affecting-evolution
-
6-2-11-the-hardy-weinberg-principle
-
6-2-12-isolation-and-speciation
-
6-2-13-artificial-selection
-
6-2-1-key-terms-in-genetics
-
6-3-manipulating-genomes11 主题
-
6-3-1-dna-sequencing
-
6-3-2-comparing-genomes
-
6-3-3-non-coding-dna-and-regulatory-genes
-
6-3-4-synthetic-biology
-
6-3-5-polymerase-chain-reaction
-
6-3-6-electrophoresis
-
6-3-7-dna-profiling
-
6-3-8-genetic-engineering
-
6-3-9-genetic-engineering-techniques
-
6-3-10-uses-of-genetic-engineering
-
6-3-11-gene-therapy
-
6-3-1-dna-sequencing
-
6-4-cloning-and-biotechnology14 主题
-
6-4-1-natural-clones-in-plants
-
6-4-2-producing-cuttings
-
6-4-3-production-of-artificial-clones-in-plants
-
6-4-4-uses-of-plant-cloning
-
6-4-5-natural-clones-in-animals
-
6-4-6-production-of-artificial-clones-in-animals
-
6-4-7-uses-of-animal-cloning
-
6-4-8-microorganisms-and-biotechnology
-
6-4-9-microorganisms-and-food-production
-
6-4-10-culturing-microorganisms
-
6-4-11-batch-and-continuous-fermentation
-
6-4-12-standard-growth-curve-of-microorganisms
-
6-4-13-factors-affecting-the-growth-of-microorganisms
-
6-4-14-immobilised-enzymes-in-biotechnology
-
6-4-1-natural-clones-in-plants
-
6-5-ecosystems7 主题
-
6-6-populations-and-sustainability6 主题
-
1-1-practical-skills-written-assessment7 主题
-
1-2-practical-skills-endorsement-assessment16 主题
-
1-2-1-practical-ethical-use-of-organisms
-
1-2-2-practical-aseptic-techniques
-
1-2-3-practical-dissection-of-gas-exchange-surfaces-in-fish-and-insects
-
1-2-4-drawing-cells-from-blood-smears
-
1-2-5-practical-investigating-biodiversity-using-sampling
-
1-2-6-practical-data-loggers-and-computer-modelling
-
1-2-7-practical-investigating-the-rate-of-diffusion
-
1-2-8-practical-investigating-water-potential
-
1-2-9-practical-factors-affecting-membrane-structure-and-permeability
-
1-2-10-biochemical-tests-reducing-sugars-and-starch
-
1-2-11-biochemical-tests-lipids
-
1-2-12-biochemical-tests-proteins
-
1-2-13-chromatography
-
1-2-14-serial-dilutions
-
1-2-15-practical-investigating-the-rate-of-transpiration
-
1-2-16-practical-using-a-light-microscope
-
1-2-1-practical-ethical-use-of-organisms
-
2-1-cell-structure9 主题
-
2-2-biological-molecules17 主题
-
2-2-1-properties-of-water
-
2-2-2-monomers-and-polymers
-
2-2-3-monosaccharides
-
2-2-4-the-glycosidic-bond
-
2-2-5-polysaccharides
-
2-2-6-biochemical-tests-reducing-sugars-and-starch
-
2-2-7-lipids-and-ester-bonds
-
2-2-8-lipids-structure-and-function
-
2-2-9-biochemical-tests-lipids
-
2-2-10-amino-acids-and-peptide-bonds
-
2-2-11-protein-structure
-
2-2-12-globular-proteins
-
2-2-13-fibrous-proteins
-
2-2-14-inorganic-ions
-
2-2-15-biochemical-tests-proteins
-
2-2-16-finding-the-concentration-of-a-substance
-
2-2-17-chromatography
-
2-2-1-properties-of-water
-
2-3-nucleotides-and-nucleic-acids8 主题
-
2-4-enzymes9 主题
-
2-4-1-the-role-of-enzymes
-
2-4-2-enzyme-action
-
2-4-3-enzyme-activity-ph
-
2-4-4-enzyme-activity-temperature
-
2-4-5-enzyme-activity-enzyme-concentration
-
2-4-6-enzyme-activity-substrate-concentration
-
2-4-7-enzyme-activity-enzyme-inhibitors
-
2-4-8-coenzymes-cofactors-and-prosthetic-groups
-
2-4-9-practical-measuring-enzyme-activity
-
2-4-1-the-role-of-enzymes
-
2-5-biological-membranes9 主题
-
2-5-1-the-cell-surface-membrane
-
2-5-2-membrane-structure-and-permeability
-
2-5-3-diffusion-and-facilitated-diffusion
-
2-5-4-practical-investigating-the-rate-of-diffusion
-
2-5-5-active-transport
-
2-5-6-endocytosis-and-exocytosis
-
2-5-7-osmosis
-
2-5-8-osmosis-in-animal-and-plant-cells
-
2-5-9-practical-investigating-water-potential
-
2-5-1-the-cell-surface-membrane
-
2-6-cell-division-cell-diversity-and-cellular-organisation11 主题
-
2-6-1-the-cell-cycle
-
2-6-2-the-stages-of-mitosis
-
2-6-3-identifying-mitosis-in-plant-cells
-
2-6-4-the-significance-of-mitosis
-
2-6-5-the-stages-of-meiosis
-
2-6-6-the-significance-of-meiosis
-
2-6-7-specialised-cells
-
2-6-8-the-organisation-of-cells
-
2-6-9-stem-cells
-
2-6-10-stem-cells-in-animals-and-plants
-
2-6-11-the-use-of-stem-cells
-
2-6-1-the-cell-cycle
-
3-1-exchange-surfaces7 主题
-
3-2-transport-in-animals12 主题
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-2-2-circulatory-systems
-
3-2-3-blood-vessels
-
3-2-4-tissue-fluid
-
3-2-5-the-mammalian-heart
-
3-2-6-practical-mammalian-heart-dissection
-
3-2-7-the-cardiac-cycle
-
3-2-8-cardiac-output
-
3-2-9-heart-action-initiation-and-control
-
3-2-10-electrocardiograms-ecgs
-
3-2-11-the-role-of-haemoglobin
-
3-2-12-adult-and-fetal-haemoglobin
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-3-transport-in-plants11 主题
-
3-3-1-the-need-for-transport-systems-in-plants
-
3-3-2-the-xylem-and-phloem
-
3-3-3-the-xylem
-
3-3-4-the-phloem
-
3-3-5-transverse-sections-stems-roots-and-leaves
-
3-3-6-the-process-of-transpiration
-
3-3-7-transpiration-in-plants
-
3-3-8-practical-investigating-the-rate-of-transpiration
-
3-3-9-translocation
-
3-3-10-the-mass-flow-hypothesis
-
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants
-
3-3-1-the-need-for-transport-systems-in-plants
2-3-2-phosphorylated-nucleotides
Structure of ATP & ADP
-
All organisms require a constant supply of energy to maintain their cells and stay alive
-
In all organisms this energy is required for:
-
Anabolic reactions (building larger molecules from smaller molecules)
-
Moving substances across the cell membrane or moving substances within the cell
-
-
In animals energy is also required for:
-
Muscle contraction – to coordinate movement at the whole-organism level
-
The conduction of nerve impulses
-
-
In all known forms of life, ATP from respiration is used to transfer energy in all energy-requiring processes in cells
-
This is why ATP is known as the universal energy currency
-
-
Adenosine Triphosphate (ATP) is a nucleotide
-
The monomers of DNA and RNA are also nucleotide
-
ATP
-
Adenosine triphosphate (ATP) is the energy-carrying molecule that provides the energy to drive many processes inside living cells
-
ATP is another type of nucleic acid and hence it is structurally very similar to the nucleotides that make up DNA and RNA
-
It is a phosphorylated nucleotide
-
Adenosine (a nucleoside) can be combined with one, two or three phosphate groups
-
One phosphate group = adenosine monophosphate (AMP)
-
Two phosphate groups = adenosine diphosphate (ADP)
-
Three phosphate groups = adenosine triphosphate (ATP)
-

The structure of AMP, ADP and ATP
Examiner Tips and Tricks
Don’t worry – you are not expected to know the structural formulae for the nucleotides that make up AMP, ADP and ATP (as in the diagram above)! You just need to learn the different groups that they are made up of ( pentose sugars and nitrogenous bases and how many phosphate groups,).Remember that adenine is a nitrogenous base whereas adenosine is a nucleoside (a base – adenine, attached to a pentose sugar).