Back to 课程

Biology_A-level_Cie

0% Complete
0/0 Steps
  1. 1-1-the-microscope-in-cell-studies
    5 主题
  2. 1-2-cells-as-the-basic-units-of-living-organisms
    5 主题
  3. 2-1-testing-for-biological-molecules
    3 主题
  4. 2-2-carbohydrates-and-lipids
    8 主题
  5. 2-3-proteins
    6 主题
  6. 2-4-water
    2 主题
  7. 3-1-mode-of-action-of-enzymes
    5 主题
  8. 3-2-factors-that-affect-enzyme-action
    8 主题
  9. 4-1-fluid-mosaic-membranes
    4 主题
  10. 4-2-movement-into-and-out-of-cells
    12 主题
  11. 5-1-replication-and-division-of-nuclei-and-cells
    6 主题
  12. 5-2-chromosome-behaviour-in-mitosis
    2 主题
  13. 6-1-structure-of-nucleic-acids-and-replication-of-dna
    4 主题
  14. 6-2-protein-synthesis
    5 主题
  15. 7-1-structure-of-transport-tissues
    4 主题
  16. 7-2-transport-mechanisms
    7 主题
  17. 8-1-the-circulatory-system
    7 主题
  18. 8-2-transport-of-oxygen-and-carbon-dioxide
    5 主题
  19. 8-3-the-heart
    4 主题
  20. 9-1-the-gas-exchange-system
    6 主题
  21. 10-1-infectious-diseases
    3 主题
  22. 10-2-antibiotics
    3 主题
  23. 11-1-the-immune-system
    4 主题
  24. 11-2-antibodies-and-vaccination
    6 主题
  25. 12-1-energy
    5 主题
  26. 12-2-respiration
    11 主题
  27. 13-1-photosynthesis-as-an-energy-transfer-process
    8 主题
  28. 13-2-investigation-of-limiting-factors
    2 主题
  29. 14-1-homeostasis-in-mammals
    8 主题
  30. 14-2-homeostasis-in-plants
    3 主题
  31. 15-1-control-and-coordination-in-mammals
    12 主题
  32. 15-2-control-and-coordination-in-plants
    3 主题
  33. 16-1-passage-of-information-from-parents-to-offspring
    5 主题
  34. 16-2-the-roles-of-genes-in-determining-the-phenotype
    7 主题
  35. 16-3-gene-control
    3 主题
  36. 17-1-variation
    4 主题
  37. 17-2-natural-and-artificial-selection
    7 主题
  38. 17-3-evolution
    2 主题
  39. 18-1-classification
    5 主题
  40. 18-2-biodiversity
    7 主题
  41. 18-3-conservation
    6 主题
  42. 19-1-principles-of-genetic-technology
    11 主题
  43. 19-2-genetic-technology-applied-to-medicine
    4 主题
  44. 19-3-genetically-modified-organisms-in-agriculture
    2 主题
  45. 1-1-the-microscope-in-cell-studies
  46. 1-2-cells-as-the-basic-units-of-living-organisms
  47. 2-1-testing-for-biological-molecules
  48. 2-2-carbohydrates-and-lipids
  49. 2-3-proteins
  50. 2-4-water
  51. 3-1-mode-of-action-of-enzymes
  52. 3-2-factors-that-affect-enzyme-action
  53. 4-1-fluid-mosaic-membranes
  54. 4-2-movement-into-and-out-of-cells
  55. 5-1-replication-and-division-of-nuclei-and-cells
  56. 5-2-chromosome-behaviour-in-mitosis
  57. 6-1-structure-of-nucleic-acids-and-replication-of-dna
  58. 6-2-protein-synthesis
  59. 7-1-structure-of-transport-tissues
  60. 7-2-transport-mechanisms
  61. 8-1-the-circulatory-system
  62. 8-2-transport-of-oxygen-and-carbon-dioxide
  63. 8-3-the-heart
  64. 9-1-the-gas-exchange-system
  65. 10-1-infectious-diseases
  66. 10-2-antibiotics
  67. 11-1-the-immune-system
  68. 11-2-antibodies-and-vaccination
课 Progress
0% Complete

Gene mutations & their effect on polypeptides

  • A gene mutation is a change in the sequence of base pairs in a DNA molecule that may result in an altered polypeptide

  • As the DNA base sequence determines the sequence of amino acids that make up a protein, mutations in a gene can sometimes lead to a change in the polypeptide that the gene codes for

  • Most mutations do not alter the polypeptide or only alter it slightly so that its structure or function is not changed

    • This is because the genetic code is degenerate

  • There are different ways that a mutation in the DNA base sequence can occur:

Insertion of nucleotides

  • A mutation that occurs when a nucleotide (with a new base) is randomly inserted into the DNA sequence is known as an insertion mutation

  • An insertion mutation changes the amino acid that would have been coded for by the original base triplet, as it creates a new, different triplet of bases

  • An insertion mutation also has a knock-on effect by changing the triplets (groups of three bases) further on in the DNA sequence

    • This is sometimes known as a frameshift mutation

  • This may dramatically change the amino acid sequence produced from this gene and therefore the ability of the polypeptide to function

Diagram showing mutation effects on genes. Original sequence: tyrosine, serine, leucine. Mutated gene with inserted base: tyrosine, arginine, serine.
An example of an insertion mutation

Deletion of nucleotides

  • A mutation that occurs when a nucleotide (and therefore its base) is randomly deleted from the DNA sequence

  • Like an insertion mutation, a deletion mutation:

    • Changes the amino acid that would have been coded for

    • Has a knock-on effect by changing the groups of three bases further on in the DNA sequence

      • This is another type of frameshift mutation

  • This may dramatically change the amino acid sequence produced from this gene and therefore the ability of the polypeptide to function

Substitution of nucleotides 

  • A mutation that occurs when a base in the DNA sequence is randomly swapped for a different base

  • Unlike an insertion or deletion mutation, a substitution mutation will only change the amino acid for the triplet (a group of three bases) in which the mutation occurs

    • It will not have a knock-on effect (it is not a frameshift mutation)

Diagram showing gene mutation with original sequence coding for tyrosine, serine, leucine, and mutated sequence coding for tyrosine, arginine, leucine.
An example of a substitution mutation

 The effect of gene mutations on polypeptides 

  • Most mutations do not alter the polypeptide or only alter it slightly so that its appearance or function is not changed

  • However, a small number of mutations code for a significantly altered polypeptide with a different shape

  • This may affect the ability of the protein to perform its function

    • For example:

      • If the shape of the active site on an enzyme changes, the substrate may no longer be able to bind to the active site

      • A structural protein (like collagen) may lose its strength if its shape changes