Back to 课程

Biology_A-level_Cie

0% Complete
0/0 Steps
  1. 1-1-the-microscope-in-cell-studies
    5 主题
  2. 1-2-cells-as-the-basic-units-of-living-organisms
    5 主题
  3. 2-1-testing-for-biological-molecules
    3 主题
  4. 2-2-carbohydrates-and-lipids
    8 主题
  5. 2-3-proteins
    6 主题
  6. 2-4-water
    2 主题
  7. 3-1-mode-of-action-of-enzymes
    5 主题
  8. 3-2-factors-that-affect-enzyme-action
    8 主题
  9. 4-1-fluid-mosaic-membranes
    4 主题
  10. 4-2-movement-into-and-out-of-cells
    12 主题
  11. 5-1-replication-and-division-of-nuclei-and-cells
    6 主题
  12. 5-2-chromosome-behaviour-in-mitosis
    2 主题
  13. 6-1-structure-of-nucleic-acids-and-replication-of-dna
    4 主题
  14. 6-2-protein-synthesis
    5 主题
  15. 7-1-structure-of-transport-tissues
    4 主题
  16. 7-2-transport-mechanisms
    7 主题
  17. 8-1-the-circulatory-system
    7 主题
  18. 8-2-transport-of-oxygen-and-carbon-dioxide
    5 主题
  19. 8-3-the-heart
    4 主题
  20. 9-1-the-gas-exchange-system
    6 主题
  21. 10-1-infectious-diseases
    3 主题
  22. 10-2-antibiotics
    3 主题
  23. 11-1-the-immune-system
    4 主题
  24. 11-2-antibodies-and-vaccination
    6 主题
  25. 12-1-energy
    5 主题
  26. 12-2-respiration
    11 主题
  27. 13-1-photosynthesis-as-an-energy-transfer-process
    8 主题
  28. 13-2-investigation-of-limiting-factors
    2 主题
  29. 14-1-homeostasis-in-mammals
    8 主题
  30. 14-2-homeostasis-in-plants
    3 主题
  31. 15-1-control-and-coordination-in-mammals
    12 主题
  32. 15-2-control-and-coordination-in-plants
    3 主题
  33. 16-1-passage-of-information-from-parents-to-offspring
    5 主题
  34. 16-2-the-roles-of-genes-in-determining-the-phenotype
    7 主题
  35. 16-3-gene-control
    3 主题
  36. 17-1-variation
    4 主题
  37. 17-2-natural-and-artificial-selection
    7 主题
  38. 17-3-evolution
    2 主题
  39. 18-1-classification
    5 主题
  40. 18-2-biodiversity
    7 主题
  41. 18-3-conservation
    6 主题
  42. 19-1-principles-of-genetic-technology
    11 主题
  43. 19-2-genetic-technology-applied-to-medicine
    4 主题
  44. 19-3-genetically-modified-organisms-in-agriculture
    2 主题
  45. 1-1-the-microscope-in-cell-studies
  46. 1-2-cells-as-the-basic-units-of-living-organisms
  47. 2-1-testing-for-biological-molecules
  48. 2-2-carbohydrates-and-lipids
  49. 2-3-proteins
  50. 2-4-water
  51. 3-1-mode-of-action-of-enzymes
  52. 3-2-factors-that-affect-enzyme-action
  53. 4-1-fluid-mosaic-membranes
  54. 4-2-movement-into-and-out-of-cells
  55. 5-1-replication-and-division-of-nuclei-and-cells
  56. 5-2-chromosome-behaviour-in-mitosis
  57. 6-1-structure-of-nucleic-acids-and-replication-of-dna
  58. 6-2-protein-synthesis
  59. 7-1-structure-of-transport-tissues
  60. 7-2-transport-mechanisms
  61. 8-1-the-circulatory-system
  62. 8-2-transport-of-oxygen-and-carbon-dioxide
  63. 8-3-the-heart
  64. 9-1-the-gas-exchange-system
  65. 10-1-infectious-diseases
  66. 10-2-antibiotics
  67. 11-1-the-immune-system
  68. 11-2-antibodies-and-vaccination
课 5, 主题 4
In Progress

globular-and-fibrous-proteins

课 Progress
0% Complete

Proteins: globular & fibrous

Globular

  • Globular proteins are compact, roughly spherical (circular) in shape and soluble in water

  • Globular proteins form a spherical shape when folding into their tertiary structure because:

    • their non-polar hydrophobic R groups are orientated towards the centre of the protein away from the aqueous surroundings

    • their polar hydrophilic R groups orientate themselves on the outside of the protein

  • This orientation enables globular proteins to be (generally) soluble in water as the water molecules can surround the polar hydrophilic R groups

  • The solubility of globular proteins in water means they play important physiological roles; globular proteins can be easily transported around organisms and be involved in metabolic reactions

  • The folding of the protein due to the interactions between the R groups results in globular proteins having specific shapes. This also enables globular proteins to play physiological roles, for example, enzymes can catalyse specific reactions and immunoglobulins can respond to specific antigens

  • Some globular proteins are conjugated proteins that contain a prosthetic group e.g. haemoglobin which contains the prosthetic group called haem

Fibrous

  • Fibrous proteins are long strands of polypeptide chains that have cross-linkages due to hydrogen bonds

  • They have little or no tertiary structure

  • Due to the large number of hydrophobic R groups fibrous proteins are insoluble in water

  • Fibrous proteins have a limited number of amino acids with the sequence usually being highly repetitive

  • The highly repetitive sequence creates very organised structures that are strong and this along with their insolubility property, makes fibrous proteins very suitable for structural roles, e.g. keratin that makes up hair, nails, horns and feathers and collagen which is a connective tissue found in skin, tendons and ligaments

Illustration comparing fibrous protein, shown as green intertwined strands, and globular protein, depicted as a red tangled shape.
Globular and fibrous protein models illustrating the roughly spherical shape of globular proteins and the long, stranded shape of fibrous proteins

 Feature

Globular

Fibrous

Shape

Roughly spherical

Long strands

Amino Acid Sequence

Irregular with a wide range of R groups

Repetitive with a limited range of R groups

Function

Physiological/functional

Structural

Examples

Haemoglobin, insulin, immunoglobulins

Collagen, keratin, myosin, actin, fibrin

Solubility

Generally soluble in water

Generally insoluble in water

Examiner Tips and Tricks

To distinguish between the two proteins, learn SAFES (Shape, Amino acid sequence, Function, Examples and Solubility).