Biology AS OCR
-
1-1-practical-skills-written-assessment AS7 主题
-
1-2-practical-skills-endorsement-assessment AS16 主题
-
1-2-1-practical-ethical-use-of-organisms as
-
1-2-2-practical-aseptic-techniques as
-
1-2-3-practical-dissection-of-gas-exchange-surfaces-in-fish-and-insects as
-
1-2-4-drawing-cells-from-blood-smears as
-
1-2-5-practical-investigating-biodiversity-using-sampling as
-
1-2-6-practical-data-loggers-and-computer-modelling as
-
1-2-7-practical-investigating-the-rate-of-diffusion as
-
1-2-8-practical-investigating-water-potential as
-
1-2-9-practical-factors-affecting-membrane-structure-and-permeability as
-
1-2-10-biochemical-tests-reducing-sugars-and-starch as
-
1-2-11-biochemical-tests-lipids as
-
1-2-12-biochemical-tests-proteins as
-
1-2-13-chromatography as
-
1-2-14-serial-dilutions as
-
1-2-15-practical-investigating-the-rate-of-transpiration as
-
1-2-16-practical-using-a-light-microscope as
-
1-2-1-practical-ethical-use-of-organisms as
-
2-1-cell-structure AS9 主题
-
2-1-2-using-a-microscope as
-
2-1-3-drawing-cells as
-
2-1-4-magnification-and-resolution as
-
2-1-5-eukaryotic-cells as
-
2-1-6-eukaryotic-cells-under-the-microscope as
-
2-1-7-organelles-and-the-production-of-proteins as
-
2-1-8-the-cytoskeleton as
-
2-1-9-prokaryotic-and-eukaryotic-cells as
-
2-1-1-studying-cells as
-
2-1-2-using-a-microscope as
-
2-2-biological-molecules AS17 主题
-
2-2-1-properties-of-water as
-
2-2-2-monomers-and-polymers as
-
2-2-3-monosaccharides as
-
2-2-4-the-glycosidic-bond as
-
2-2-5-polysaccharides as
-
2-2-6-biochemical-tests-reducing-sugars-and-starch as
-
2-2-7-lipids-and-ester-bonds as
-
2-2-8-lipids-structure-and-function as
-
2-2-9-biochemical-tests-lipids as
-
2-2-10-amino-acids-and-peptide-bonds as
-
2-2-11-protein-structure as
-
2-2-12-globular-proteins as
-
2-2-13-fibrous-proteins as
-
2-2-14-inorganic-ions as
-
2-2-15-biochemical-tests-proteins as
-
2-2-16-finding-the-concentration-of-a-substance as
-
2-2-17-chromatography as
-
2-2-1-properties-of-water as
-
2-3-nucleotides-and-nucleic-acids AS8 主题
-
2-4-enzymes AS9 主题
-
2-4-1-the-role-of-enzymes as
-
2-4-2-enzyme-action as
-
2-4-3-enzyme-activity-ph as
-
2-4-4-enzyme-activity-temperature as
-
2-4-5-enzyme-activity-enzyme-concentration as
-
2-4-6-enzyme-activity-substrate-concentration as
-
2-4-7-enzyme-activity-enzyme-inhibitors as
-
2-4-8-coenzymes-cofactors-and-prosthetic-groups as
-
2-4-9-practical-measuring-enzyme-activity as
-
2-4-1-the-role-of-enzymes as
-
2-5-biological-membranes AS9 主题
-
2-5-1-the-cell-surface-membrane as
-
2-5-2-membrane-structure-and-permeability as
-
2-5-3-diffusion-and-facilitated-diffusion as
-
2-5-4-practical-investigating-the-rate-of-diffusion as
-
2-5-5-active-transport as
-
2-5-6-endocytosis-and-exocytosis as
-
2-5-7-osmosis as
-
2-5-8-osmosis-in-animal-and-plant-cells as
-
2-5-9-practical-investigating-water-potential as
-
2-5-1-the-cell-surface-membrane as
-
2-6-cell-division-cell-diversity-and-cellular-organisation AS11 主题
-
2-6-1-the-cell-cycle as
-
2-6-2-the-stages-of-mitosis as
-
2-6-3-identifying-mitosis-in-plant-cells as
-
2-6-4-the-significance-of-mitosis as
-
2-6-5-the-stages-of-meiosis as
-
2-6-6-the-significance-of-meiosis as
-
2-6-7-specialised-cells as
-
2-6-8-the-organisation-of-cells as
-
2-6-9-stem-cells as
-
2-6-10-stem-cells-in-animals-and-plants as
-
2-6-11-the-use-of-stem-cells as
-
2-6-1-the-cell-cycle as
-
3-1-exchange-surfaces AS7 主题
-
3-2-transport-in-animals AS12 主题
-
3-2-1-the-need-for-transport-systems-in-animals as
-
3-2-2-circulatory-systems as
-
3-2-3-blood-vessels as
-
3-2-4-tissue-fluid as
-
3-2-5-the-mammalian-heart as
-
3-2-6-practical-mammalian-heart-dissection as
-
3-2-7-the-cardiac-cycle as
-
3-2-8-cardiac-output as
-
3-2-9-heart-action-initiation-and-control as
-
3-2-10-electrocardiograms-ecgs as
-
3-2-11-the-role-of-haemoglobin as
-
3-2-12-adult-and-fetal-haemoglobin as
-
3-2-1-the-need-for-transport-systems-in-animals as
-
3-3-transport-in-plants AS11 主题
-
3-3-1-the-need-for-transport-systems-in-plants as
-
3-3-2-the-xylem-and-phloem as
-
3-3-3-the-xylem as
-
3-3-4-the-phloem as
-
3-3-5-transverse-sections-stems-roots-and-leaves as
-
3-3-6-the-process-of-transpiration as
-
3-3-7-transpiration-in-plants as
-
3-3-8-practical-investigating-the-rate-of-transpiration as
-
3-3-9-translocation as
-
3-3-10-the-mass-flow-hypothesis as
-
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants as
-
3-3-1-the-need-for-transport-systems-in-plants as
-
4-1-communicable-diseases-disease-prevention-and-the-immune-system AS16 主题
-
4-1-1-common-pathogens-and-communicable-diseases as
-
4-1-2-transmission-of-communicable-pathogens as
-
4-1-3-plant-defences-against-pathogens as
-
4-1-4-non-specific-immune-responses as
-
4-1-5-phagocytes as
-
4-1-6-blood-cells as
-
4-1-7-the-t-lymphocyte-response as
-
4-1-8-the-b-lymphocyte-response as
-
4-1-9-primary-and-secondary-immune-responses as
-
4-1-10-antibodies as
-
4-1-11-opsonins-agglutinins-and-anti-toxins as
-
4-1-12-types-of-immunity as
-
4-1-13-autoimmune-diseases as
-
4-1-14-principles-of-vaccination as
-
4-1-15-sources-of-medicine as
-
4-1-16-antibiotics as
-
4-1-1-common-pathogens-and-communicable-diseases as
-
4-2-biodiversity AS10 主题
-
4-2-1-biodiversity as
-
4-2-2-sampling-to-determine-biodiversity as
-
4-2-3-practical-investigating-biodiversity-using-sampling as
-
4-2-4-measuring-species-richness-and-species-evenness as
-
4-2-5-simpsons-index as
-
4-2-6-genetic-diversity as
-
4-2-7-factors-affecting-biodiversity as
-
4-2-8-reasons-for-maintaining-biodiversity as
-
4-2-9-methods-of-maintaining-biodiversity as
-
4-2-10-conservation-agreements as
-
4-2-1-biodiversity as
-
4-3-classification-and-evolution AS15 主题
-
4-3-1-classification-of-species as
-
4-3-2-binomial-system as
-
4-3-3-classification-of-the-three-domains as
-
4-3-4-classification-of-the-five-kingdoms as
-
4-3-5-classification-and-phylogeny as
-
4-3-6-evidence-of-evolution as
-
4-3-7-types-of-variation as
-
4-3-8-standard-deviation as
-
4-3-9-variation-t-test-method as
-
4-3-10-variation-t-test-worked-example as
-
4-3-11-spearmans-rank-correlation as
-
4-3-12-adaptation as
-
4-3-13-natural-selection as
-
4-3-14-evolution-of-resistance as
-
4-3-15-consequences-of-resistance as
-
4-3-1-classification-of-species as
4-3-3-classification-of-the-three-domains as
Exam code:H020
Classification of the Three Domains
-
Taxonomy is the practice of biological classification
-
It involves placing organisms into a series of categories or taxa
-
There are different ranks within the hierarchical classification system used in biology
-
The highest rank is the domain
-
There are three domains of life
-
-
Cell type has a major role in the classification of organisms into the three domains but do not confuse cell types and domains
-
The two cell types are prokaryotic cells and eukaryotic cells
-
Prokaryotic cells are easily distinguishable in that they lack a nucleus
-
Eukaryotic cells have compartmentalised structures, with at least their genetic material segregated from the rest of the cell in a nucleus
-
The three domains of life
-
Although it was well known that most forms of life could be divided into prokaryotes and eukaryotes, advances in the studies of molecular biology, biochemistry and cell structure in the latter part of the 20th century showed that the prokaryotes are not one uniform group
-
Based on molecular analyses of RNA genes in particular, and by looking at features such as ribosomal RNA (rRNA), aspects of protein synthesis and the structure of cell membranes and flagella, scientists realised that using cell type to classify organisms was insufficient and that prokaryotes could be divided into two separate groups (domains)
-
The three domains are:
-
Bacteria (prokaryotes)
-
Archaea (prokaryotes)
-
Eukarya (eukaryotes)
-

The taxonomic classification system with the three domains
Archaea
-
Organisms within this domain are sometimes referred to as the extremophile prokaryotes, as archaea were first discovered living in extreme environments (although not all archaea do)
-
Archael cells have no nucleus (and so are prokaryotic)
-
They were initially classified as bacteria until several unique properties were discovered that separated them from known bacteria, including:
-
Unique lipids being found in the membranes of their cells
-
No peptidoglycan in their cell walls
-
Ribosomal structure (particularly that of the small subunit) are more similar to the eukaryotic ribosome than that of the bacteria
-
-
Archaea have a similar size range as bacteria (and in many ways metabolism is similar between the two groups)
-
DNA transcription is more similar to that of eukaryotes
-
Example: Halobacterium salinarum is a species of the archaea domain that can be found in environments with high salt concentrations like the Dead Sea
Bacteria
-
These are organisms that have prokaryotic cells which contain no nucleus
-
They vary in size over a wide range: the smallest are bigger than the largest known-viruses and the largest are smaller than the smallest known single-celled eukaryotes
-
Bacterial cells divide by binary fission
-
Example: Staphylococcus pneumoniae is a species of bacteria that causes pneumonia
Eukarya
-
Organisms that have eukaryotic cells with nuclei and membrane-bound organelles are placed in this domain
-
They vary massively in size from single-celled organisms that are only several micrometres across, to large multicellular organisms many-metres in size, such as blue whales
-
Eukaryotic cells divide by mitosis
-
Eukaryotes can reproduce sexually or asexually
-
Example: Canis lupus, also known as wolves
Key differences between archaea & bacteria
-
Initially, all organisms within the Archaea domain were classified as Bacteria
-
Then several unique features possessed by Archaea were discovered that separated them from both Bacteria and Eukarya
-
The main differences between Archaea and Bacteria are seen in:
-
Membrane lipids
-
Ribosomal RNA
-
Cell wall composition
-
Membrane lipids
-
The membrane lipids found in the cells of Archaea organisms are completely unique
-
They are not found in any bacterial or eukaryotic cells
-
The membrane lipids of Archaea consist of branched hydrocarbon chains bonded to glycerol by ether linkages
-
The membrane lipids of Bacteria consist of unbranched hydrocarbon chains bonded to glycerol by ester linkages
Ribosomal RNA
-
Both Archaea and Bacteria possess 70S ribosomes
-
The 70S ribosomes in Archaea possess a smaller subunit that is more similar to the subunit found in Eukaryotic ribosomes than subunits in Bacterial ribosomes
-
The base sequences of ribosomal RNA in Archaea show more similarity to the rRNA of Eukarya than Bacteria
-
The primary structure of ribosome proteins in Archaea show more similarity to the ribosome proteins in Eukarya than Bacteria
-
Composition of cell walls
-
Organisms from the Bacteria domain have cells that always possess cell walls with peptidoglycan
-
Organisms from the Archaea domain also have cells that always possess cell walls, however these do not contain peptidoglycan
Characteristics & features of the three domains table

Responses