Biology AS OCR
-
1-1-practical-skills-written-assessment AS7 主题
-
1-2-practical-skills-endorsement-assessment AS16 主题
-
1-2-1-practical-ethical-use-of-organisms as
-
1-2-2-practical-aseptic-techniques as
-
1-2-3-practical-dissection-of-gas-exchange-surfaces-in-fish-and-insects as
-
1-2-4-drawing-cells-from-blood-smears as
-
1-2-5-practical-investigating-biodiversity-using-sampling as
-
1-2-6-practical-data-loggers-and-computer-modelling as
-
1-2-7-practical-investigating-the-rate-of-diffusion as
-
1-2-8-practical-investigating-water-potential as
-
1-2-9-practical-factors-affecting-membrane-structure-and-permeability as
-
1-2-10-biochemical-tests-reducing-sugars-and-starch as
-
1-2-11-biochemical-tests-lipids as
-
1-2-12-biochemical-tests-proteins as
-
1-2-13-chromatography as
-
1-2-14-serial-dilutions as
-
1-2-15-practical-investigating-the-rate-of-transpiration as
-
1-2-16-practical-using-a-light-microscope as
-
1-2-1-practical-ethical-use-of-organisms as
-
2-1-cell-structure AS9 主题
-
2-1-2-using-a-microscope as
-
2-1-3-drawing-cells as
-
2-1-4-magnification-and-resolution as
-
2-1-5-eukaryotic-cells as
-
2-1-6-eukaryotic-cells-under-the-microscope as
-
2-1-7-organelles-and-the-production-of-proteins as
-
2-1-8-the-cytoskeleton as
-
2-1-9-prokaryotic-and-eukaryotic-cells as
-
2-1-1-studying-cells as
-
2-1-2-using-a-microscope as
-
2-2-biological-molecules AS17 主题
-
2-2-1-properties-of-water as
-
2-2-2-monomers-and-polymers as
-
2-2-3-monosaccharides as
-
2-2-4-the-glycosidic-bond as
-
2-2-5-polysaccharides as
-
2-2-6-biochemical-tests-reducing-sugars-and-starch as
-
2-2-7-lipids-and-ester-bonds as
-
2-2-8-lipids-structure-and-function as
-
2-2-9-biochemical-tests-lipids as
-
2-2-10-amino-acids-and-peptide-bonds as
-
2-2-11-protein-structure as
-
2-2-12-globular-proteins as
-
2-2-13-fibrous-proteins as
-
2-2-14-inorganic-ions as
-
2-2-15-biochemical-tests-proteins as
-
2-2-16-finding-the-concentration-of-a-substance as
-
2-2-17-chromatography as
-
2-2-1-properties-of-water as
-
2-3-nucleotides-and-nucleic-acids AS8 主题
-
2-4-enzymes AS9 主题
-
2-4-1-the-role-of-enzymes as
-
2-4-2-enzyme-action as
-
2-4-3-enzyme-activity-ph as
-
2-4-4-enzyme-activity-temperature as
-
2-4-5-enzyme-activity-enzyme-concentration as
-
2-4-6-enzyme-activity-substrate-concentration as
-
2-4-7-enzyme-activity-enzyme-inhibitors as
-
2-4-8-coenzymes-cofactors-and-prosthetic-groups as
-
2-4-9-practical-measuring-enzyme-activity as
-
2-4-1-the-role-of-enzymes as
-
2-5-biological-membranes AS9 主题
-
2-5-1-the-cell-surface-membrane as
-
2-5-2-membrane-structure-and-permeability as
-
2-5-3-diffusion-and-facilitated-diffusion as
-
2-5-4-practical-investigating-the-rate-of-diffusion as
-
2-5-5-active-transport as
-
2-5-6-endocytosis-and-exocytosis as
-
2-5-7-osmosis as
-
2-5-8-osmosis-in-animal-and-plant-cells as
-
2-5-9-practical-investigating-water-potential as
-
2-5-1-the-cell-surface-membrane as
-
2-6-cell-division-cell-diversity-and-cellular-organisation AS11 主题
-
2-6-1-the-cell-cycle as
-
2-6-2-the-stages-of-mitosis as
-
2-6-3-identifying-mitosis-in-plant-cells as
-
2-6-4-the-significance-of-mitosis as
-
2-6-5-the-stages-of-meiosis as
-
2-6-6-the-significance-of-meiosis as
-
2-6-7-specialised-cells as
-
2-6-8-the-organisation-of-cells as
-
2-6-9-stem-cells as
-
2-6-10-stem-cells-in-animals-and-plants as
-
2-6-11-the-use-of-stem-cells as
-
2-6-1-the-cell-cycle as
-
3-1-exchange-surfaces AS7 主题
-
3-2-transport-in-animals AS12 主题
-
3-2-1-the-need-for-transport-systems-in-animals as
-
3-2-2-circulatory-systems as
-
3-2-3-blood-vessels as
-
3-2-4-tissue-fluid as
-
3-2-5-the-mammalian-heart as
-
3-2-6-practical-mammalian-heart-dissection as
-
3-2-7-the-cardiac-cycle as
-
3-2-8-cardiac-output as
-
3-2-9-heart-action-initiation-and-control as
-
3-2-10-electrocardiograms-ecgs as
-
3-2-11-the-role-of-haemoglobin as
-
3-2-12-adult-and-fetal-haemoglobin as
-
3-2-1-the-need-for-transport-systems-in-animals as
-
3-3-transport-in-plants AS11 主题
-
3-3-1-the-need-for-transport-systems-in-plants as
-
3-3-2-the-xylem-and-phloem as
-
3-3-3-the-xylem as
-
3-3-4-the-phloem as
-
3-3-5-transverse-sections-stems-roots-and-leaves as
-
3-3-6-the-process-of-transpiration as
-
3-3-7-transpiration-in-plants as
-
3-3-8-practical-investigating-the-rate-of-transpiration as
-
3-3-9-translocation as
-
3-3-10-the-mass-flow-hypothesis as
-
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants as
-
3-3-1-the-need-for-transport-systems-in-plants as
-
4-1-communicable-diseases-disease-prevention-and-the-immune-system AS16 主题
-
4-1-1-common-pathogens-and-communicable-diseases as
-
4-1-2-transmission-of-communicable-pathogens as
-
4-1-3-plant-defences-against-pathogens as
-
4-1-4-non-specific-immune-responses as
-
4-1-5-phagocytes as
-
4-1-6-blood-cells as
-
4-1-7-the-t-lymphocyte-response as
-
4-1-8-the-b-lymphocyte-response as
-
4-1-9-primary-and-secondary-immune-responses as
-
4-1-10-antibodies as
-
4-1-11-opsonins-agglutinins-and-anti-toxins as
-
4-1-12-types-of-immunity as
-
4-1-13-autoimmune-diseases as
-
4-1-14-principles-of-vaccination as
-
4-1-15-sources-of-medicine as
-
4-1-16-antibiotics as
-
4-1-1-common-pathogens-and-communicable-diseases as
-
4-2-biodiversity AS10 主题
-
4-2-1-biodiversity as
-
4-2-2-sampling-to-determine-biodiversity as
-
4-2-3-practical-investigating-biodiversity-using-sampling as
-
4-2-4-measuring-species-richness-and-species-evenness as
-
4-2-5-simpsons-index as
-
4-2-6-genetic-diversity as
-
4-2-7-factors-affecting-biodiversity as
-
4-2-8-reasons-for-maintaining-biodiversity as
-
4-2-9-methods-of-maintaining-biodiversity as
-
4-2-10-conservation-agreements as
-
4-2-1-biodiversity as
-
4-3-classification-and-evolution AS15 主题
-
4-3-1-classification-of-species as
-
4-3-2-binomial-system as
-
4-3-3-classification-of-the-three-domains as
-
4-3-4-classification-of-the-five-kingdoms as
-
4-3-5-classification-and-phylogeny as
-
4-3-6-evidence-of-evolution as
-
4-3-7-types-of-variation as
-
4-3-8-standard-deviation as
-
4-3-9-variation-t-test-method as
-
4-3-10-variation-t-test-worked-example as
-
4-3-11-spearmans-rank-correlation as
-
4-3-12-adaptation as
-
4-3-13-natural-selection as
-
4-3-14-evolution-of-resistance as
-
4-3-15-consequences-of-resistance as
-
4-3-1-classification-of-species as
2-4-4-enzyme-activity-temperature as
Exam code:H020
Enzyme Activity: Temperature
-
Enzymes have a specific optimum temperature
-
This is the temperature at which they catalyse a reaction at the maximum rate
-
-
Lower temperatures either prevent reactions from proceeding or slow them down because:
-
Molecules move relatively slowly as they have less kinetic energy
-
Less kinetic energy results in a lower frequency of successful collisions between substrate molecules and the active sites of the enzymes which leads to less frequent enzyme-substrate complex formation
-
Substrates and enzymes also collide with less energy, making it less likely for bonds to be formed or broken (stopping the reaction from occurring)
-
-
Higher temperatures cause reactions to speed up because:
-
Molecules move more quickly as they have more kinetic energy
-
Increased kinetic energy results in a higher frequency of successful collisions between substrate molecules and the active sites of the enzymes which leads to more frequent enzyme-substrate complex formation
-
Substrates and enzymes also collide with more energy, making it more likely for bonds to be formed or broken (allowing the reaction to occur)
-
Denaturation
-
If temperatures continue to increase past a certain point, the rate at which an enzyme catalyses a reaction drops sharply, as the enzyme begins to denature:
-
The increased kinetic energy and vibration of the enzyme molecules puts a strain on them, eventually causing the weaker hydrogen and ionic bonds that hold the enzyme molecule in its precise shape to start to break
-
The breaking of bonds causes the tertiary structure of the protein (i.e. the enzyme) to change
-
The active site is permanently damaged and its shape is no longer complementary to the substrate, preventing the substrate from binding
-
Denaturation has occurred if the substrate can no longer bind
-

At high temperatures enzymes are denatured – the active site changes shape and is no longer complementary to the substrate. This change is irreversible.

The effect of temperature on the rate of an enzyme-catalysed reaction
-
The optimum temperature of an enzyme and the temperature at which an enzyme is denatured varies according to the habitat to which an organism is adapted
-
Most enzymes present in living organisms denature at temperatures above 60 °C
-
-
Very few human enzymes can function at temperatures above 50 °C
-
Humans maintain a body temperature of about 37 °C and even temperatures exceeding 40 °C can cause the denaturation of some enzymes
-
-
Some bacteria that live in thermal springs have enzymes that can withstand temperatures in excess of 80 °C
-
These enzymes are thermostable
-
Temperature coefficient
-
The temperature coefficient for a biological reaction is the ratio between the rates of that reaction at two different temperatures
-
For most enzyme-catalysed reactions the rate of the reaction doubles for every 10 °C increase in temperature
-
The temperature coefficient (Q) for a reaction that follows this pattern is: Q₁₀ = 2
-
-
The temperature coefficient can be calculated using the following equation:
Temperature coefficient = (rate of reaction at (x + 10) °C) ÷ (rate of reaction at x °C)
Worked Example
The graph below shows the effect of temperature on an enzyme-catalysed reaction. Using the information in the graph, calculate the temperature coefficient for the reaction between 20 °C and 30 °C.

Answer:
Step One: Using the graph, note the intercepts on the vertical axis at 20 °C and 30 °C
At 20 °C the rate of reaction is 10 arbitrary units and at 30 °C the rate of reaction is 20 arbitrary units
Step Two: Write out the equation and substitute in the known values
Temperature coefficient = (rate of reaction at (x + 10) °C) ÷ (rate of reaction at x °C)
Q₁₀ = rate of reaction at 30 °C ÷ rate of reaction at 20 °C
Q₁₀ = 20 ÷ 10
Step Three: Calculate the temperature coefficient
Q₁₀ = 2
(There is no unit for Q₁₀ as it is a ratio)
Examiner Tips and Tricks
When answering questions about reaction rates for enzyme-catalysed reactions, make sure to explain how the temperature affects the speed at which the molecules (enzymes and substrates) are moving (i.e. their kinetic energy) and how this, in turn, affects the number of successful collisions.A common mistake in exams is to say that enzymes are ‘killed’ at high temperatures. This is not biologically accurate and you would be marked down for this, as enzymes are protein molecules, not living organisms. Enzymes are denatured, not killed.
Responses