Back to 课程

Biology AS OCR

0% Complete
0/0 Steps
  1. 1-1-practical-skills-written-assessment AS
    7 主题
  2. 1-2-practical-skills-endorsement-assessment AS
    16 主题
  3. 2-1-cell-structure AS
    9 主题
  4. 2-2-biological-molecules AS
    17 主题
  5. 2-3-nucleotides-and-nucleic-acids AS
    8 主题
  6. 2-4-enzymes AS
    9 主题
  7. 2-5-biological-membranes AS
    9 主题
  8. 2-6-cell-division-cell-diversity-and-cellular-organisation AS
    11 主题
  9. 3-1-exchange-surfaces AS
    7 主题
  10. 3-2-transport-in-animals AS
    12 主题
  11. 3-3-transport-in-plants AS
    11 主题
  12. 4-1-communicable-diseases-disease-prevention-and-the-immune-system AS
    16 主题
  13. 4-2-biodiversity AS
    10 主题
  14. 4-3-classification-and-evolution AS
    15 主题
课 Progress
0% Complete

Exam code:H020

DNA Structure

  • The nucleic acid DNA is a polynucleotide – it is made up of many nucleotides bonded together in a long chain

DNA polynucleotide strand, downloadable AS & A Level Biology revision notes, downloadable AS & A Level Biology revision notes

A DNA nucleotide

  • DNA molecules are made up of two polynucleotide strands lying side by side, running in opposite directions – the strands are said to be antiparallel

  • Each DNA polynucleotide strand is made up of alternating deoxyribose sugars and phosphate groups bonded together to form the sugar-phosphate backbone. These bonds are covalent bonds known as phosphodiester bonds

    • The phosphodiester bonds link the 5-carbon of one deoxyribose sugar molecule to the phosphate group from the same nucleotide, which is itself linked by another phosphodiester bond to the 3-carbon of the deoxyribose sugar molecule of the next nucleotide in the strand

    • Each DNA polynucleotide strand is said to have a 3’ end and a 5’ end (these numbers relate to which carbon on the pentose sugar could be bonded with another nucleotide)

    • As the strands run in opposite directions (they are antiparallel), one is known as the 5’ to 3’ strand and the other is known as the 3’ to 5’ strand

  • The nitrogenous bases of each nucleotide project out from the backbone towards the interior of the double-stranded DNA molecule

DNA polynucleotide strand (2), downloadable AS & A Level Biology revision notes

A single DNA polynucleotide strand showing the positioning of the ester bonds

Hydrogen bonding

  • The two antiparallel DNA polynucleotide strands that make up the DNA molecule are held together by hydrogen bonds between the nitrogenous bases

  • These hydrogen bonds always occur between the same pairs of bases:

    • The purine adenine (A) always pairs with the pyrimidine thymine (T) – two hydrogen bonds are formed between these bases

    • The purine guanine (G) always pairs with the pyrimidine cytosine (C) – three hydrogen bonds are formed between these bases

  • This is process is known as complementary base pairing and the pairs are known as complementary base pairs

DNA molecule with hydrogen bonding, downloadable AS & A Level Biology revision notes

A section of DNA – two antiparallel DNA polynucleotide strands held together by hydrogen bonds

Double helix

  • DNA is not two-dimensional as seen in the diagram above

  • DNA is described as a double helix (this refers to the three-dimensional shape formed by the twisting of the DNA molecule)

DNA double helix formation, downloadable AS & A Level Biology revision notes

DNA molecules form a three-dimensional structure known as a DNA double helix

Examiner Tips and Tricks

Make sure you can name the different components of a DNA molecule (sugar-phosphate backbone, nucleotide, complementary base pairs, phosphodiester bonds, hydrogen bonds) and make sure you are able to locate these on a diagram.You must know how many hydrogen bonds occur between the different base pairs.Remember that the bases are complementary so the number of A = T and C = G, as you could be asked to determine how many bases are present in a DNA molecule if given the number of one of the bases.

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注