Biology AS AQA
-
1-1-biological-molecules-carbohydrates11 主题
-
1-1-1-biological-molecules-key-terms
-
1-1-2-biological-molecules-reactions
-
1-1-3-monosaccharides
-
1-1-4-glucose
-
1-1-5-the-glycosidic-bond
-
1-1-6-chromatography-monosaccharides
-
1-1-7-disaccharides
-
1-1-8-starch-and-glycogen
-
1-1-9-cellulose
-
1-1-10-biochemical-tests-sugars-and-starch
-
1-1-11-finding-the-concentration-of-glucose
-
1-1-1-biological-molecules-key-terms
-
1-2-biological-molecules-lipids3 主题
-
1-3-biological-molecules-proteins5 主题
-
1-4-proteins-enzymes12 主题
-
1-4-1-many-proteins-are-enzymes
-
1-4-2-enzyme-specificity
-
1-4-3-how-enzymes-work
-
1-4-4-required-practical-measuring-enzyme-activity
-
1-4-5-drawing-a-graph-for-enzyme-rate-experiments
-
1-4-6-using-a-tangent-to-find-initial-rate-of-reaction
-
1-4-7-limiting-factors-affecting-enzymes-temperature
-
1-4-8-limiting-factors-affecting-enzymes-ph
-
1-4-10-limiting-factors-affecting-enzymes-enzyme-concentration
-
1-4-11-limiting-factors-affecting-enzymes-substrate-concentration
-
1-4-12-limiting-factors-affecting-enzymes-inhibitors
-
1-4-14-control-of-variables-and-uncertainty
-
1-4-1-many-proteins-are-enzymes
-
1-5-nucleic-acids-structure-and-dna-replication8 主题
-
1-5-2-nucleotide-structure-and-the-phosphodiester-bond
-
1-5-3-dna-structure-and-function
-
1-5-4-rna-structure-and-function
-
1-5-5-ribosomes
-
1-5-6-the-origins-of-research-on-the-genetic-code
-
1-5-8-the-process-of-semi-conservative-replication
-
1-5-9-calculating-the-frequency-of-nucleotide-bases
-
1-5-10-the-watson-crick-model
-
1-5-2-nucleotide-structure-and-the-phosphodiester-bond
-
1-6-atp-water-and-inorganic-ions4 主题
-
2-1-cell-structure7 主题
-
2-2-the-microscope-in-cell-studies4 主题
-
2-3-cell-division-in-eukaryotic-and-prokaryotic-cells8 主题
-
2-4-cell-membranes-and-transport9 主题
-
2-4-1-the-structure-of-cell-membranes
-
2-4-3-the-cell-surface-membrane
-
2-4-4-diffusion
-
2-4-5-osmosis
-
2-4-7-osmosis-in-animal-cells
-
2-4-9-required-practical-investigating-water-potential
-
2-4-10-active-transport-and-co-transport
-
2-4-11-adaptations-for-rapid-transport
-
2-4-13-required-practical-factors-affecting-membrane-permeability
-
2-4-1-the-structure-of-cell-membranes
-
2-5-cell-recognition-and-the-immune-system7 主题
-
2-6-vaccines-disease-and-monoclonal-antibodies6 主题
-
3-1-adaptations-for-gas-exchange6 主题
-
3-2-human-gas-exchange14 主题
-
3-2-5-the-alveolar-epithelium
-
3-2-1-the-human-gas-exchange-system
-
3-2-2-dissecting-the-gas-exchange-system
-
3-2-3-microscopy-and-gas-exchange-surfaces
-
3-2-4-investigating-gas-exchange
-
3-5-5-investigating-heart-rate
-
3-5-6-blood-vessels
-
3-5-7-capillaries-and-tissue-fluid
-
3-5-8-cardiovascular-disease-data
-
3-2-10-risk-factor-data
-
3-2-11-correlations-and-causal-relationships
-
3-2-6-ventilation-and-gas-exchange
-
3-2-8-the-effects-of-lung-disease
-
3-2-9-pollution-and-smoking-data
-
3-2-5-the-alveolar-epithelium
-
3-3-digestion-and-absorption5 主题
-
3-4-mass-transport-in-animals6 主题
-
3-5-the-circulatory-system-in-animals4 主题
-
3-6-mass-transport-in-plants6 主题
-
4-1-dna-genes-and-chromosomes10 主题
-
4-2-dna-and-protein-synthesis3 主题
-
4-3-genetic-diversity-mutations-and-meiosis7 主题
-
4-4-genetic-diversity-and-adaptation6 主题
-
4-5-species-and-taxonomy4 主题
-
4-6-biodiversity9 主题
3-3-4-mechanisms-of-absorption
Exam code:7401
Mechanisms of absorption
-
The products of digestion are absorbed through the intestinal lining
-
Molecules pass into the intestinal epithelial cells, from which they can move into the blood
-
Absorption of the major biological molecules occurs by different mechanisms:
-
Amino acids and monosaccharides are absorbed via co-transport
-
Lipid absorption involves micelles
-
Absorption by co-transport
Amino acids
-
Co-transporter proteins are found within the cell-surface membranes of the epithelial cells in the small intestine
-
The process of cotransport occurs as follows:
-
Sodium ions are actively transported from the epithelial cell into the blood via a sodium-potassium pump, decreasing the concentration of sodium ions in the epithelial cell
-
This stage maintains the sodium ion gradient that is essential to the next part of the process
-
-
Sodium ions move down their concentration gradient from the intestine into the epithelial cell, carrying an amino acid is transported at the same time by the co-transporter protein
-
This is a form of facilitated diffusion
-
-
The concentration of amino acids in the epithelial cell increases, and amino acids diffuse down their concentration gradient into the blood
-
-
While the action of the co-transporter protein is passive, energy is required to create the sodium ion gradient, so the process of co-transport is considered, overall, to be active transport

Monosaccharides
-
The co-transport of glucose uses the same mechanism as that of amino acids:
-
active transport of sodium ions into the blood
-
facilitated diffusion of sodium and glucose into the epithelial cell, via a glucose co-transporter protein
-
facilitated diffusion of glucose into the blood
-

Lipid absorption
-
The products of lipid digestion are:
-
fatty acids
-
monoglycerides
-
-
Monoglycerides and fatty acids associate with bile salts to form micelles, which transport these insoluble molecules to the cell surface membranes of the epithelial cells
-
Micelles constantly break up and reform; when they break apart their lipid-soluble contents can cross the membrane by diffusion
-
The contents of micelles are non-polar so can diffuse through the phospholipid bilayer of the cell membrane
-

-
Short fatty acid chains within the epithelial cells can move directly into the blood via diffusion
-
Longer fatty acid chains recombine with monoglycerides and glycerol to form triglycerides in the endoplasmic reticulum
-
The triglycerides are packaged into chylomicrons which eventually enter the bloodstream
Responses