Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Planes of symmetry

What is a plane of symmetry?

  • A plane is a flat surface that can be any 2D shape

  • A plane of symmetry is a plane that splits a 3D shape into two congruent (identical) halves

  • If a 3D shape has a plane of symmetry, it has reflection symmetry

    • The two congruent halves are identical, mirror images of each other

  • All prisms have at least one plane of symmetry

    • Cubes have 9 planes of symmetry

    • Cuboids have 3 planes of symmetry

    • Cylinders have an infinite number of planes of symmetry

    • The number of planes of symmetry in other prisms will be equal to the number of lines of symmetry in its cross-section plus 1

  • Pyramids can have planes of symmetry too

    • The number of planes of symmetry in pyramids will be equal to the number of lines of symmetry in its 2D base

    • If the base of the pyramid is a regular polygon of n sides, it will have n planes of symmetry

A cube has 9 planes of symmetry, a cuboid has 3 planes of symmetry, a square based pyramid has 4 planes of symmetry

Can a 3D shape have rotational symmetry?

  • 3D shapes are able to be rotated around different axes

    • Depending on which axis the shape is rotated around, 3D shapes can have rotational symmetry

  • Recall that rotational symmetry is how many times the shape looks the same (congruent) when rotated through 360 degrees

    • See the example of the triangular prism where the cross-section is an equilateral triangle

A triangular prism (where the cross-section is an equilateral triangle) looks the same, 3 times, as it is rotated 360 degrees about an axis through the centre of the triangular cross section. Therefore it has rotational symmetry order 3.
A square pyramid has rotational symmetry order 4 about the vertical axis, as its base is a square. A cylinder has infinite rotational symmetry about the vertical axis, as its cross section is a circle. This would also be true for a cone.

Examiner Tips and Tricks

  • If you’re unsure in the exam, consider the properties of the 3D shape.

    • Is it a prism or a pyramid?

    • How many lines of symmetry are there in the 2D faces or cross-section?

Worked Example

The diagram below shows a cuboid of length 8 cm, width 5 cm and height 11 cm.

Write down the number of planes of symmetry of this cuboid.
 

A cuboid ABCDEFGH, with AB = 8 cm, BC = 5 cm and CG = 11 cm.

A plane of symmetry is where a shape can be “sliced” such that it is symmetrical

A cuboid with three different pairs of opposite rectangles has 3 planes of symmetry

3 planes of symmetry

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注