Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Properties of polygons

What are the names of common 2D shapes?

  • You should know the general names of all the 2D polygons

    • A triangle has 3 sides

    • A quadrilateral has 4 sides

    • A pentagon has 5 sides

    • A hexagon has 6 sides

    • A heptagon has 7 sides

    • An octagon has 8 sides

    • A nonagon has 9 sides

    • A decagon has 10 sides

    • A polygon is a flat (plane) shape with n straight sides

      • regular polygon has all sides the same length and all angles the same size

Names of shapes with 3 to 10 sides

What are the names of the different types of triangles?

  • You should know the names and properties of the different types of triangles

    • An equilateral triangle has 3 equal sides and 3 equal angles

    • An isosceles triangle has 2 equal sides and 2 equal angles

    • A right-angled triangle has one 90° angle

    • A scalene triangle has 3 sides all of different lengths

MPfz1HV0_cie-igcse-core-rn-angles-in-triangles-diagram-2---types-of-triangles

What are the names of the different types of quadrilaterals?

  • You should know the names and properties of the different types of quadrilaterals

    • These are squares, rectangles, parallelograms, rhombuses, trapeziums and kites

types of quadrilaterals

What are the properties of rectangles and squares?

  • Rectangles and squares have four equal right angles (90°)

  • Rectangles have two pairs of equal length, parallel sides

    • Squares are just regular rectangles; all four of their sides are equal

  • The diagonals of a rectangle bisect each other at the centre of the rectangle

    • This means that they cut each other in half

    • The intersecting diagonals form two pairs of angles at the centre

      • In a square, all four of these angles will be equal to 90°

  • Pythagoras’ theorem can be used to find the length of the diagonal of a square or rectangle

    • The diagonal forms the hypotenuse of a right-angled triangle

Properties of a rectangle

What are the properties of parallelograms and rhombuses?

  • Parallelograms and rhombuses (rhombi) have two pairs of equal, opposite, angles

  • Parallelograms and rhombuses have two pairs of opposite, parallel sides

  • Rhombuses have four sides of the same length

    • This means a rhombus is a regular parallelogram

      • A square is also a regular rhombus

  • The diagonals of a parallelogram bisect each other, forming two pairs of opposite angles

  • The diagonals of a rhombus bisect each other at right angles (90°)

    • This means that they cut each other in half

    • The diagonals will not be of equal length

      • On the diagram below, the diagonal AC is shorter than the diagonal DB

Properties of parallelograms

What are the properties of trapeziums?

  • Trapeziums have one pair of opposite, parallel sides

    • These are not of equal length

  • Trapeziums may not have any equal angles

    • As with all quadrilaterals, the angles add up to 360°

  • If a trapezium has a line of symmetry, it is classed as isosceles

    • Isosceles trapeziums have two pairs of equal angles

    • The non-parallel sides in an isosceles trapezium will be equal length

    • An isosceles trapezium has two diagonals of equal length

Properties of trapeziums

What are the properties of kites?

  • Kites have one line of symmetry, known as their main diagonal

  • The angles opposite the main diagonal are equal

    • These are angles ABC and ADC on the diagram below

  • The diagonals of a kite bisect each other at right angles (90°)

    • This means that they cut each other in half

    • The diagonals will not be of equal length

  • Kites have no parallel sides

  • Kites have two pairs of equal length, adjacent sides

<img alt=”Properties of kites” class=”ContentBlock_figure__vJw2q” data-nimg=”1″ decoding=”async” height=”680″ sizes=”(max-width: 320px) 320w, (max-width: 640px) 640w, (max-width: 960px) 960w, (max-width: 1280px) 1280w, 1920w” src=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=3840/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png” srcset=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=16/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 16w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=32/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 32w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=48/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 48w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=64/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 64w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=96/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 96w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=128/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 128w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=256/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 256w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=384/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 384w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=640/https://cdn.savemyexams.com/uploads/2022/11/4-1-2-2d-shapes-kites-diagram-5.png 640w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=750/https://cdn.savemyexams.co

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注