Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Angles at centre & circumference

What are circle theorems?

  • Circle Theorems deal with angles that occur when lines are drawn within (and connected to) a circle

  • You may need to use other facts and rules such as:

    • basic properties of lines and angles

    • properties of triangles and quadrilaterals

    • angles in parallel lines or polygons

Parts of a circle

Circle Theorem: The angle at the centre is twice the angle at the circumference

  • In this theorem, the chords (radii) to the centre and the chords to the circumference are both drawn from (subtended by) the ends of the same arc

Circle theorem showing that the angle at the centre of the circle is twice the angle at the circumference.
  • To spot this circle theorem on a diagram

    • find any two radii in the circle and follow them to the circumference

    • see if there are lines from those points going to any other point on the circumference

    • it may look like the shape of an arrowhead

  • When explaining this theorem in an exam you must use the keywords:

    • The angle at the centre is twice the angle at the circumference

  • This theorem is still true when the ‘triangle parts’ overlap

    Triangle overlap, IGCSE & GCSE Maths revision notes
  • It is also true when the lines form a diamond shape

    • You need to compare the reflex angle at the centre with the angle at the circumference

    • Common mistakes are to

      • compare the wrong angles

      • confuse it with a different circle theorem on cyclic quadrilaterals

Diagram showing the circle theorem: Angle at the centre is double the angle at the circumference for a reflex angle.

Examiner Tips and Tricks

  • Questions often say to give “reasons” for your answer

    • Quote an angle fact or circle theorem for every angle you find (not just one for the final answer)

Worked Example

Find the value of x in the diagram below. 

Circle with centre, O, and three points on the circumference, A, B and C. Two triangles are formed, ABO and AOC. Angle ABO = 60 degrees, angle BOC = 150 degrees and angle CAO = x degrees.

Give a reason for each step of your working.

There are three radii in the diagram, AO, BO and CO
Mark these as equal length lines

Notice how they create two isosceles triangles
Base angles in isosceles triangles are equal

Angle OAB = angle OBA = 60º (isosceles triangle)

Circle with centre, O, and three points on the circumference, A, B and C. Two triangles are formed, ABO and AOC. Angle ABO = 60 degrees, angle BOC = 150 degrees and angle CAO = x degrees. Lengths AO, BO and CO are marked with dashes and angle OAB = 60 degrees.

Use the circle theorem:

The angle at the centre is twice the angle at the circumference

Form an equation for <img alt=”x” data-mathml='<math ><semantics><mi >x</mi><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”commentary” height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%2211%22%20wrs%3Ab

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注