Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Combined conditional probabilities

What is a combined conditional probability?

  • This is when you have two (or more) successive events, one after the other, and the second event depends on (is conditional on) the first

How do I calculate combined conditional probabilities?

  • You need to adjust the number of outcomes as you go along

    • For example, selecting two cards from a pack of 52 playing cards without replacing the first card:

      • P(red 1st card) is 26 reds out of 52 cards

      • If the 1st card is not replaced, there are only 25 reds left out the remaining 51 cards

      • P(red 2nd card) is 25 reds out of 51 cards

      • P(red then red) = 26 over 52 cross times 25 over 51

Examiner Tips and Tricks

If a question says “two cards are drawn” then you may assume that they draw 1 card followed by another card without replacement (the maths is the same).

Can I draw a tree diagram for combined conditional probabilities?

  • Yes, a tree diagram is a useful way to show combined conditional probabilities

    • For example, two counters are drawn at random from a bag of 3 blue and 8 red counters without replacement

      • The probabilities are shown below

Tree Diagram

What if there are multiple possibilities within one question?

  • You may need a listing strategy (e.g. AAB, ABA, BAA)

  • You will need the or rule for multiple possibilities

    • P(AB or BA or AA or) = P(AB) + P(BA) + P(AA) +…

      • Add the cases together

  • Remember that AB and BA are not the same

    • AB means A happened first, then B

    • BA means B happened first, then A

Examiner Tips and Tricks

Try not to simplify your probabilities too early as it is easier to add probabilities together when they all have the same denominator!

Worked Example

A bag contains 10 yellow beads, 6 blue beads and 4 green beads.

A bead is taken at random from the bag and not replaced.

A second bead is then taken at random from the bag.

(a) Find the probability that both beads are different colours.

Let Y, B and G represent choosing a yellow, blue and green bead

Method 1

The probability of the beads being different colours is equal to 1 subtract the probability that the beads are the same colour

Find the probability of both beads being the same colour

P(same colours) = P(YY) + P(BB) + P(GG)

Calculate each conditional probability separately, remembering the number of beads changes after one is drawn and not replaced

For example, P(YY) = 10 over 20 cross times 9 over 19

<img alt=”10 over 20 cross times 9 over 19 plus 6 over 20 cross times 5 over 19 plus 4 over 20 cross times 3 over 19″ data-mathml=”<math ><semantics><mrow><mfrac><mn>10</mn><mn>20</mn></mfrac><mo>&#215;</mo><mfrac><mn>9</mn><mn>19</mn></mfrac><mo>+</mo><mfrac><mn>6</mn><mn>20</mn></mfrac><mo>&#215;</mo><mfrac><mn>5</mn><mn>19</mn></mfrac><mo>+</mo><mfrac><mn>4</mn><mn>20</mn></mfrac><mo>&#215;</mo><mfrac><mn>3</mn><mn>19</mn></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true,”toolbar”:”<toolbar ref=’general’><tab ref=’general’><removeItem ref=’setColor’/><removeItem ref=’bold’/><removeItem ref=’italic’/><removeItem ref=’autoItalic’/><removeItem ref=’setUnicode’/><removeItem ref=’mtext’ /><removeItem ref=’rtl’/><removeItem ref=’forceLigature’/><removeItem ref=’setFontFamily’ /><removeItem ref=’setFontSize’/></tab></toolbar>”}</annotation></semantics></math>” data-type=”working” height=”47″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2247%22%20width%3D%22242%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmn%3E10%3C%2Fmn%3E%3Cmn%3E20%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmn%3E19%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmn%3E20%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E19%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E20%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E19%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math18b36de76996a9c7d682490ecc5’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABEGhlYWQQC2qxAAACpAAAADZoaGVhCGsXSAAAAtwAAAAkaG10eE2rRkcAAAMAAAAADGxvY2EAHTwYAAADDAAAABBtYXhwBT0FPgAAAxwAAAAgbmFtZaBxlY4AAAM8AAABn3Bvc3QB9wD6AAAE3AAAACBwcmVwa1uragAABPwAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACACsA1%2F%2F%2FAAAAKwDX%2F%2F%2F%2F1v8rAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAEAgABVAtUCqwALAEkBGLIMAQEUExCxAAP2sQEE9bAKPLEDBfWwCDyxBQT1sAY8sQ0D5gCxAAATELEBBuSxAQETELAFPLEDBOWxCwX1sAc8sQkE5TEwEyERMxEhFSERIxEhgAEAVQEA%2FwBV%2FwABqwEA%2FwBW%2FwABAAACAIAAVQLVAoAAAwAHAEYYsAEUALEAABMQsQAJ5LEAARMQsAQ8sQYI9LACPDABsQgBExCxAAP2sAc8sQEF9bAGPLIFBwAQ9LACPLEJA%2BaxBAX1sAM8EzMBIxEzASOAVQIAVVX%2BAFUCgP3VAiv91QABAAAAAQAA1XjOQV8PPPUAAwQA%2F%2F%2F%2F%2F9Y6E3P%2F%2F%2F%2F%2F1joTcwAA%2FyAEgAOrAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2FtgSAAAEAAAAAAAAAAAAAAAAAAAADA1IAVQNWAIADVgCAAAAAAAAAACgAAAChAAABEAABAAAAAwBeAAUAAAAAAAIAgAQAAAAAAAQAAN4AAAAAAAAAFQECAAAAAAAAAAEAEgAAAAAAAAAAAAIADgASAAAAAAAAAAMAMAAgAAAAAAAAAAQAEgBQAAAAAAAAAAUAFgBiAAAAAAAAAAYACQB4AAAAAAAAAAgAHACBAAEAAAAAAAEAEgAAAAEAAAAAAAIADgASAAEAAAAAAAMAMAAgAAEAAAAAAAQAEgBQAAEAAAAAAAUAFgBiAAEAAAAAAAYACQB4AAEAAAAAAAgAHACBAAMAAQQJAAEAEgAAAAMAAQQJAAIADgASAAMAAQQJAAMAMAAgAAMAAQQJAAQAEgBQAAMAAQQJAAUAFgBiAAMAAQQJAAYACQB4AAMAAQQJAAgAHACBAE0AYQB0AGgAIABGAG8AbgB0AFIAZQBnAHUAbABhAHIATQBhAHQAaABzACAARgBvAHIAIABNAG8AcgBlACAATQBhAHQAaAAgAEYAbwBuAHQATQBhAHQAaAAgAEYAbwBuAHQAVgBlAHIAcwBpAG8AbgAgADEALgAwTWF0aF9Gb250AE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAAAwAAAAAAAAH0APoAAAAAAAAAAAAAAAAAAAAAAAAAALkHEQAAjYUYALIAAAAVFBOxAAE%2F)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%3C%2Fstyle%3E%3C%2Fdefs%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%222.5%22%20×2%3D%2223.5%22%20y1%3D%2223.5%22%20y2%3D%2223.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2213.5%22%20y%3D%2216%22%3E10%3C%2Ftext%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2213.5%22%20y%3D%2241%22%3E20%3C%2Ftext%3E%3Ctext%20font-family%3D%22math18b36de76996a9c7d682490ecc5%22%20font-size%3D%2216%22%20text-anchor%3D%22middle%22%20x%3D%2234.5%22%20y%3D%2230%22%3E%26%23xD7%3B%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2245.5%22%20×2%3D%2266.5%22%20y1%3D%2223.5%22%20y2%3D%2223.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2256.5%22%20y%3D%2216%22%3E9%3C%2Ftext%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2256.5%22%20y%3D%2241%22%3E19%3C%2Ftext%3E%3Ctext%20

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注