Maths Gcse Edexcel Higher
-
Scatter-Graphs-And-Correlation Edexcel Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Edexcel Higher4 主题
-
Histograms Edexcel Higher3 主题
-
Statistical-Diagrams Edexcel Higher7 主题
-
Averages-Ranges-And-Data Edexcel Higher8 主题
-
Capture-Recapture Edexcel Higher
-
Population-And-Sampling Edexcel Higher
-
Comparing-Data-Sets Edexcel Higher
-
Range-And-Interquartile-Range Edexcel Higher
-
Averages-From-Grouped-Data Edexcel Higher
-
Averages-From-Tables Edexcel Higher
-
Calculations-With-The-Mean Edexcel Higher
-
Mean-Median-And-Mode Edexcel Higher
-
Capture-Recapture Edexcel Higher
-
Combined-And-Conditional-Probability Edexcel Higher3 主题
-
Tree-Diagrams Edexcel Higher1 主题
-
Simple-Probability-Diagrams Edexcel Higher3 主题
-
Transformations Edexcel Higher5 主题
-
Vectors Edexcel Higher6 主题
-
3D-Pythagoras-And-Trigonometry Edexcel Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Edexcel Higher4 主题
-
Pythagoras-And-Trigonometry Edexcel Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Edexcel Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Edexcel Higher5 主题
-
Volume-And-Surface-Area Edexcel Higher3 主题
-
Circles-Arcs-And-Sectors Edexcel Higher2 主题
-
Area-And-Perimeter Edexcel Higher4 主题
-
Circle-Theorems Edexcel Higher7 主题
-
Circle-Theorem-Proofs Edexcel Higher
-
The-Alternate-Segment-Theorem Edexcel Higher
-
Angles-In-The-Same-Segment Edexcel Higher
-
Angles-In-Cyclic-Quadrilaterals Edexcel Higher
-
Theorems-With-Chords-And-Tangents Edexcel Higher
-
Angle-In-A-Semicircle Edexcel Higher
-
Angles-At-Centre-And-Circumference Edexcel Higher
-
Circle-Theorem-Proofs Edexcel Higher
-
Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Edexcel Higher3 主题
-
Symmetry-And-Shapes Edexcel Higher6 主题
-
Exchange-Rates-And-Best-Buys Edexcel Higher2 主题
-
Standard-And-Compound-Units Edexcel Higher5 主题
-
Direct-And-Inverse-Proportion Edexcel Higher2 主题
-
Problem-Solving-With-Ratios Edexcel Higher2 主题
-
Ratios Edexcel Higher3 主题
-
Sequences Edexcel Higher4 主题
-
Transformations-Of-Graphs Edexcel Higher2 主题
-
Graphing-Inequalities Edexcel Higher2 主题
-
Solving-Inequalities Edexcel Higher2 主题
-
Real-Life-Graphs Edexcel Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Edexcel Higher2 主题
-
Equation-Of-A-Circle Edexcel Higher2 主题
-
Graphs-Of-Functions Edexcel Higher6 主题
-
Linear-Graphs Edexcel Higher4 主题
-
Coordinate-Geometry Edexcel Higher4 主题
-
Functions Edexcel Higher3 主题
-
Forming-And-Solving-Equations Edexcel Higher3 主题
-
Iteration Edexcel Higher1 主题
-
Simultaneous-Equations Edexcel Higher2 主题
-
Quadratic-Equations Edexcel Higher4 主题
-
Linear-Equations Edexcel Higher1 主题
-
Algebraic-Proof Edexcel Higher1 主题
-
Rearranging-Formulas Edexcel Higher2 主题
-
Algebraic-Fractions Edexcel Higher4 主题
-
Completing-The-Square Edexcel Higher1 主题
-
Factorising Edexcel Higher6 主题
-
Expanding-Brackets Edexcel Higher3 主题
-
Algebraic-Roots-And-Indices Edexcel Higher1 主题
-
Introduction Edexcel Higher7 主题
-
Using-A-Calculator Edexcel Higher1 主题
-
Surds Edexcel Higher2 主题
-
Rounding-Estimation-And-Bounds Edexcel Higher2 主题
-
Fractions-Decimals-And-Percentages Edexcel Higher3 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Edexcel Higher4 主题
-
Percentages Edexcel Higher3 主题
-
Fractions Edexcel Higher4 主题
-
Powers-Roots-And-Standard-Form Edexcel Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Edexcel Higher4 主题
-
Number-Operations Edexcel Higher10 主题
-
Product-Rule-For-Counting Edexcel Higher
-
Systematic-Lists Edexcel Higher
-
Related-Calculations Edexcel Higher
-
Multiplication-And-Division Edexcel Higher
-
Addition-And-Subtraction Edexcel Higher
-
Money-Calculations Edexcel Higher
-
Negative-Numbers Edexcel Higher
-
Irrational-Numbers Edexcel Higher
-
Order-Of-Operations-Bidmas-Bodmas Edexcel Higher
-
Mathematical-Symbols Edexcel Higher
-
Product-Rule-For-Counting Edexcel Higher
Mean-Median-And-Mode Edexcel Higher
Exam code:1MA1
Mean, median & mode
What is the mode?
-
The mode is the value that appears the most often
-
The mode of 1, 2, 2, 5, 6 is 2
-
-
There can be more than one mode
-
The modes of 1, 2, 2, 5, 5, 6 are 2 and 5
-
-
The mode can also be called the modal value
What is the median?
-
The median is the middle value when you put values in size order
-
The median of 4, 2, 3 can be found by
-
ordering the numbers: 2, 3, 4
-
and choosing the middle value, 3
-
-
-
If you have an even number of values, find the midpoint of the middle two values
-
The median of 1, 2, 3, 4 is 2.5
-
2.5 is the midpoint of 2 and 3
-
-
The midpoint is the sum of the two middle values divided by 2
-
What is the mean?
-
The mean is the sum of the values divided by the number of values
-
The mean of 1, 2, 6 is (1 + 2 + 6) ÷ 3 = 3
-
-
The mean can be fraction or a decimal
-
It may need rounding
-
You do not need to force it to be a whole number
-
You can have a mean of 7.5 people, for example!
-
-
How do I know when to use the mode, median or mean?
-
The mode, median and mean are different ways to measure an average
-
In certain situations it is better to use one average over another
-
For example:
-
If the data has extreme values (outliers) like 1, 1, 4, 50
The mode is 1
The median is 2.5
The mean is 14-
Don’t use the mean (it’s badly affected by extreme values)
-
-
If the data has more than one mode
-
Don’t use the mode as it is not clear
-
-
If the data is non-numerical, like dog, cat, cat, fish
-
You can only use the mode
-
-
Worked Example
15 students were timed to see how long it took them to solve a mathematical problem. Their times, in seconds, are given below.
|
12 |
10 |
15 |
14 |
17 |
|
11 |
12 |
13 |
9 |
21 |
|
14 |
20 |
19 |
16 |
23 |
(a) Find the mean time, giving your answer to 3 significant figures.
Add up all the numbers (you can add the rows if it helps)
12 + 10 + 15 + 14 + 17 = 68
11 + 12 + 13 + 9 + 21 = 66
14 + 20 + 19 + 16 + 23 = 92
Total = 68 + 66 + 92 = 226
Divide the total by the number of values (there are 15 values)
Write the mean to 3 significant figures
Remember to include the units
The mean time is 15.1 seconds (to 3 s.f.)
(b) Find the median time.
Write the times in order and find the middle value
<img alt=”up diagonal strike 9 space space space space up diagonal strike 10 space space space space up diagonal strike 11 space space space space up diagonal strike 12 space space space space up diagonal strike 12 space space space space up diagonal strike 13 space space space space up diagonal strike 14 space space space space circle enclose 14 space space space space up diagonal strike 15 space space space space up diagonal strike 16 space space space space up diagonal strike 17 space space space space up diagonal strike 19 space space space space up diagonal strike 20 space space space space up diagonal strike 21 space space space space up diagonal strike 23″ data-mathml='<math ><semantics><mrow><menclose notation=”updiagonalstrike”><mn>9</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>10</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>11</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>12</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>12</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>13</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>14</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”circle”><mn>14</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>15</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>16</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>17</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>19</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>20</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>21</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>23</mn></menclose></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”32″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2232%22%20width%3D%22494%22%20wrs%3Abaseline%3D%2221%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E10%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E11%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E13%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E14%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22circle%22%3E%3Cmn%3E14%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E16%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E17%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E19%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E20%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E21%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E23%3C%2Fmn%3E%3C%2Fmenclose%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3Etext%7Bfill%3A%23000000%3B%7D%3C%2Fstyle%3E%3C%2Fdefs%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%220.5%22%20×2%3D%228.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%224.5%22%20y%3D%2221%22%3E9%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2225.5%22%20×2%3D%2242.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2234.5%22%20y%3D%2221%22%3E10%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2259.5%22%20×2%3D%2276.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2268.5%22%20y%3D%2221%22%3E11%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2293.5%22%20×2%3D%22110.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%22102.5%22%20y%3D%2221%22%3E12%3C%2Ftext%3E%3Cline%20
Responses