Back to 课程

Maths Gcse Wjec-Eduqas Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher
    4 主题
  3. Histograms Wjec-Eduqas Higher
    3 主题
  4. Statistical-Diagrams- Wjec-Eduqas Higher
    6 主题
  5. Averages-Ranges-And-Data Wjec-Eduqas Higher
    8 主题
  6. Combined-And-Conditional-Probability Wjec-Eduqas Higher
    3 主题
  7. Tree-Diagrams- Wjec-Eduqas Higher
    1 主题
  8. Simple-Probability-Diagrams- Wjec-Eduqas Higher
    3 主题
  9. Introduction-To-Probability Wjec-Eduqas Higher
    3 主题
  10. Transformations Wjec-Eduqas Higher
    5 主题
  11. Vectors Wjec-Eduqas Higher
    6 主题
  12. 3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    1 主题
  13. Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher
    4 主题
  14. Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    4 主题
  15. Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher
    1 主题
  16. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher
    5 主题
  17. Volume-And-Surface-Area- Wjec-Eduqas Higher
    3 主题
  18. Circles-Arcs-And-Sectors- Wjec-Eduqas Higher
    2 主题
  19. Area-And-Perimeter- Wjec-Eduqas Higher
    4 主题
  20. Circle-Theorems Wjec-Eduqas Higher
    7 主题
  21. Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher
    5 主题
  22. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher
    3 主题
  23. Symmetry-And-Shapes Wjec-Eduqas Higher
    6 主题
  24. Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher
    2 主题
  25. Standard-And-Compound-Units- Wjec-Eduqas Higher
    5 主题
  26. Direct-And-Inverse-Proportion- Wjec-Eduqas Higher
    2 主题
  27. Problem-Solving-With-Ratios Wjec-Eduqas Higher
    2 主题
  28. Ratios Wjec-Eduqas Higher
    3 主题
  29. Sequences Wjec-Eduqas Higher
    4 主题
  30. Transformations-Of-Graphs- Wjec-Eduqas Higher
    2 主题
  31. Graphing-Inequalities- Wjec-Eduqas Higher
    2 主题
  32. Solving-Inequalities- Wjec-Eduqas Higher
    2 主题
  33. Real-Life-Graphs Wjec-Eduqas Higher
    4 主题
  34. Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher
    2 主题
  35. Equation-Of-A-Circle- Wjec-Eduqas Higher
    2 主题
  36. Graphs-Of-Functions Wjec-Eduqas Higher
    6 主题
  37. Linear-Graphs Wjec-Eduqas Higher
    4 主题
  38. Quadratic-Equations Wjec-Eduqas Higher
    4 主题
  39. Linear-Equations- Wjec-Eduqas Higher
    1 主题
  40. Algebraic-Proof Wjec-Eduqas Higher
    1 主题
  41. Rearranging-Formulae Wjec-Eduqas Higher
    2 主题
  42. Coordinate-Geometry- Wjec-Eduqas Higher
    4 主题
  43. Functions Wjec-Eduqas Higher
    3 主题
  44. Forming-And-Solving-Equations Wjec-Eduqas Higher
    3 主题
  45. Iteration Wjec-Eduqas Higher
    2 主题
  46. Simultaneous-Equations Wjec-Eduqas Higher
    2 主题
  47. Algebraic-Fractions- Wjec-Eduqas Higher
    4 主题
  48. Completing-The-Square Wjec-Eduqas Higher
    1 主题
  49. Factorising Wjec-Eduqas Higher
    6 主题
  50. Expanding-Brackets Wjec-Eduqas Higher
    3 主题
  51. Algebraic-Roots-And-Indices Wjec-Eduqas Higher
    1 主题
  52. Introduction-To-Algebra Wjec-Eduqas Higher
    4 主题
  53. Using-A-Calculator Wjec-Eduqas Higher
    1 主题
  54. Surds Wjec-Eduqas Higher
    2 主题
  55. Rounding-Estimation-And-Bounds Wjec-Eduqas Higher
    2 主题
  56. Fractions-Decimals-And-Percentages Wjec-Eduqas Higher
    3 主题
  57. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher
    4 主题
  58. Percentages Wjec-Eduqas Higher
    3 主题
  59. Fractions Wjec-Eduqas Higher
    4 主题
  60. Powers-Roots-And-Standard-Form Wjec-Eduqas Higher
    4 主题
  61. Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher
    4 主题
  62. Number-Operations Wjec-Eduqas Higher
    10 主题
课 Progress
0% Complete

Exam code:C300

Tree diagrams

How do I draw a tree diagram?

  • Tree diagrams can be used for repeated experiments with two outcomes

    • The 1st experiment has outcome A or not A

    • The 2nd experiment has outcome B or not B

  • Read the tree diagram from left to right along its branches 

    • For example, the top branches give A followed by B

      • This is called A and B

How to set up a tree diagram for two experiments each with two possible outcomes

How do I find probabilities from tree diagrams?

  • Write the probabilities on each branch

    • Remember that P(not A) = 1 – P(A)

      • Probabilities on each pair of branches add to 1

  • Multiply along the branches from left to right

    • This gives P(1st outcome and 2nd outcome)

  • Add between the separate cases

    • For example

      • P(AA or BB) = P(AA) + P(BB)

  • The probabilities of all possible cases add to 1

  • If asked to find the probability of at least one outcome, it is quicker to do 1 – P(none)

How do I use tree diagrams with conditional probability?

  • Probabilities that depend on a particular thing having happened first in a tree diagram are called conditional probabilities

  • For example, the probability that a team wins a game may depend on whether they won or lost the previous game

    • The probabilities for ‘win’ on the first set of branches may be different to those for ‘win’ on the second set of branches

  • Another example of conditional probabilities is “without replacement” scenarios

    • e.g. two items are drawn from a bag of different coloured items without the first item drawn being replaced

    • The probabilities on the second set of branches will change depending on which branch has been followed on the first set of branches

      • The denominators in the probabilities for the second set of branches will be one less than those on the first set of branches

      • The numerators on the second set of branches will also change

  • Conditional probability questions are sometimes introduced by the expression ‘given that…’

    • e.g. ‘Find the probability that the team win their next game given that they lost their previous game’

  • The notation straight P open parentheses A vertical line B close parentheses is often used for conditional probabilities

    • That is read as ‘the probability of A given B’

    • e.g. straight P open parentheses win vertical line lose close parentheses is the probability a team wins, given that they lost the previous game

Examiner Tips and Tricks

  • When multiplying along branches with fractions, don’t cancel fractions in your working

    • Having the same denominator makes them easier to add together!

Worked Example

A worker drives through two sets of traffic lights on their way to work.
Each set of traffic lights has only two options: green or red.
The probability of the first set of traffic lights being on green is 5 over 7.
The probability of the second set of traffic lights being on green is 8 over 9.

(a) Draw and label a tree diagram. Show the probabilities of every possible outcome.

Work out the probabilities of each set of traffic lights being on red, R
Use P(red) = 1 – P(green)

<img alt=”str

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注