Maths Gcse Wjec-Eduqas Higher
-
Scatter-Graphs-And-Correlation Wjec-Eduqas Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher4 主题
-
Histograms Wjec-Eduqas Higher3 主题
-
Statistical-Diagrams- Wjec-Eduqas Higher6 主题
-
Averages-Ranges-And-Data Wjec-Eduqas Higher8 主题
-
Questionnaires Wjec-Eduqas Higher
-
Population-And-Sampling Wjec-Eduqas Higher
-
Comparing-Data-Sets Wjec-Eduqas Higher
-
Range-And-Interquartile-Range Wjec-Eduqas Higher
-
Averages-From-Grouped-Data Wjec-Eduqas Higher
-
Averages-From-Tables- Wjec-Eduqas Higher
-
Calculations-With-The-Mean Wjec-Eduqas Higher
-
Mean-Median-And-Mode Wjec-Eduqas Higher
-
Questionnaires Wjec-Eduqas Higher
-
Combined-And-Conditional-Probability Wjec-Eduqas Higher3 主题
-
Tree-Diagrams- Wjec-Eduqas Higher1 主题
-
Simple-Probability-Diagrams- Wjec-Eduqas Higher3 主题
-
Introduction-To-Probability Wjec-Eduqas Higher3 主题
-
Transformations Wjec-Eduqas Higher5 主题
-
Vectors Wjec-Eduqas Higher6 主题
-
3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher4 主题
-
Pythagoras-And-Trigonometry Wjec-Eduqas Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher5 主题
-
Volume-And-Surface-Area- Wjec-Eduqas Higher3 主题
-
Circles-Arcs-And-Sectors- Wjec-Eduqas Higher2 主题
-
Area-And-Perimeter- Wjec-Eduqas Higher4 主题
-
Circle-Theorems Wjec-Eduqas Higher7 主题
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
The-Alternate-Segment-Theorem Wjec-Eduqas Higher
-
Angles-In-The-Same-Segment Wjec-Eduqas Higher
-
Angles-In-Cyclic-Quadrilaterals Wjec-Eduqas Higher
-
Theorems-With-Chords-And-Tangents Wjec-Eduqas Higher
-
Angle-In-A-Semicircle Wjec-Eduqas Higher
-
Angles-At-Centre-And-Circumference Wjec-Eduqas Higher
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher3 主题
-
Symmetry-And-Shapes Wjec-Eduqas Higher6 主题
-
Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher2 主题
-
Standard-And-Compound-Units- Wjec-Eduqas Higher5 主题
-
Direct-And-Inverse-Proportion- Wjec-Eduqas Higher2 主题
-
Problem-Solving-With-Ratios Wjec-Eduqas Higher2 主题
-
Ratios Wjec-Eduqas Higher3 主题
-
Sequences Wjec-Eduqas Higher4 主题
-
Transformations-Of-Graphs- Wjec-Eduqas Higher2 主题
-
Graphing-Inequalities- Wjec-Eduqas Higher2 主题
-
Solving-Inequalities- Wjec-Eduqas Higher2 主题
-
Real-Life-Graphs Wjec-Eduqas Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher2 主题
-
Equation-Of-A-Circle- Wjec-Eduqas Higher2 主题
-
Graphs-Of-Functions Wjec-Eduqas Higher6 主题
-
Linear-Graphs Wjec-Eduqas Higher4 主题
-
Quadratic-Equations Wjec-Eduqas Higher4 主题
-
Linear-Equations- Wjec-Eduqas Higher1 主题
-
Algebraic-Proof Wjec-Eduqas Higher1 主题
-
Rearranging-Formulae Wjec-Eduqas Higher2 主题
-
Coordinate-Geometry- Wjec-Eduqas Higher4 主题
-
Functions Wjec-Eduqas Higher3 主题
-
Forming-And-Solving-Equations Wjec-Eduqas Higher3 主题
-
Iteration Wjec-Eduqas Higher2 主题
-
Simultaneous-Equations Wjec-Eduqas Higher2 主题
-
Algebraic-Fractions- Wjec-Eduqas Higher4 主题
-
Completing-The-Square Wjec-Eduqas Higher1 主题
-
Factorising Wjec-Eduqas Higher6 主题
-
Expanding-Brackets Wjec-Eduqas Higher3 主题
-
Algebraic-Roots-And-Indices Wjec-Eduqas Higher1 主题
-
Introduction-To-Algebra Wjec-Eduqas Higher4 主题
-
Using-A-Calculator Wjec-Eduqas Higher1 主题
-
Surds Wjec-Eduqas Higher2 主题
-
Rounding-Estimation-And-Bounds Wjec-Eduqas Higher2 主题
-
Fractions-Decimals-And-Percentages Wjec-Eduqas Higher3 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher4 主题
-
Percentages Wjec-Eduqas Higher3 主题
-
Fractions Wjec-Eduqas Higher4 主题
-
Powers-Roots-And-Standard-Form Wjec-Eduqas Higher4 主题
-
Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher4 主题
-
Number-Operations Wjec-Eduqas Higher10 主题
-
Product-Rule-For-Counting Wjec-Eduqas Higher
-
Systematic-Lists Wjec-Eduqas Higher
-
Related-Calculations- Wjec-Eduqas Higher
-
Multiplication-And-Division Wjec-Eduqas Higher
-
Addition-And-Subtraction Wjec-Eduqas Higher
-
Money-Calculations- Wjec-Eduqas Higher
-
Negative-Numbers- Wjec-Eduqas Higher
-
Irrational-Numbers Wjec-Eduqas Higher
-
Order-Of-Operations-Bidmasbodmas Wjec-Eduqas Higher
-
Mathematical-Symbols Wjec-Eduqas Higher
-
Product-Rule-For-Counting Wjec-Eduqas Higher
Interpreting-Cumulative-Frequency-Diagrams Wjec-Eduqas Higher
Exam code:C300
Interpreting cumulative frequency diagrams
How do I use and interpret a cumulative frequency diagram?
-
A cumulative frequency diagram provides a way to estimate key facts about the data
-
median
-
lower and upper quartiles (and interquartile range)
-
percentiles
-
-
These values will be estimates as the original raw data is unknown
-
Cumulative frequency diagrams are used with grouped data
-
Points are joined by a smooth curve
-
This means the data is assumed to be smoothly spread out over each interval
-
-
How do I find the median, lower quartile and upper quartile from a cumulative frequency diagram?
-
This is all about understanding how many data values are represented by the cumulative frequency diagram
-
This may be stated in words within the question
-
If not, it will be the highest value on the frequency (y-) axis that the curve on the diagram reaches
-
This should be “top right” of the curve on a cumulative frequency diagram
-
-
-
Finding the median:
-
STEP 1
Find the position of the median, fordata values, this will be
-
This is different from finding the median from a set of data values
-
E.g. for a list of 60 data values the median would be halfway between the 30th and 31st values
-
But for a cumulative frequency diagram it would just be
-
-
STEP 2
Draw a horizontal line fromon the cumulative frequency (y-) axis until it hits the curve
-
STEP 3
Draw a vertical line from that point on the curve down to the horizontal (x-) axis-
The value where that line hits the horizontal axis will be the median
-
-
-
Finding the lower quartile:
-
STEP 1
Find the position of the lower quartile-
For
data values this will be
-
-
STEP 2
Draw a horizontal line fromon the cumulative frequency axis until it hits the curve
-
STEP 3
Draw a vertical line from that point on the curve down to the horizontal (x-) axis-
The value where that line hits the horizontal axis will be the lower quartile
-
-
-
Finding the upper quartile:
-
STEP 1
Find the position of the upper quartile-
For
data values this will be <img alt=”fraction numerator 3 n over denominator 4 end fraction space open parentheses straight i. straight e. space space 3 cross times n over 4 close parentheses” data-mathml='<math ><semantics><mrow><mfrac><mrow><mn>3</mn><mi>n</mi></mrow><mn>4</mn></mfrac><mo> </mo><mfenced><mrow><mi mathvariant=”normal”>i</mi><mo>.</mo><mi mathvariant=”normal”>e</mi><mo>.</mo><mo> </mo><mo> </mo><mn>3</mn><mo>×</mo><mfrac><mi>n</mi><mn>4</mn></mfrac></mrow></mfenced></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2247%22%20width%3D%22121%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi%20mathvariant%3D%22normal%22%3Ei%3C%2Fmi%3E%3Cmo%3E.%3C%2Fmo%3E%3Cmi%20mathvariant%3D%22normal%22%3Ee%3C%2Fmi%3E%3Cmo%3E.%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3En%3C%2Fmi%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math17877d8d99e03ab35636d63f0bd’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAAA3WhlYWQQC2qxAAACdAAAADZoaGVhCGsXSAAAAqwAAAAkaG10eE2rRkcAAALQAAAADGxvY2EAHTwYAAAC3AAAABBtYXhwBT0FPgAAAuwAAAAgbmFtZaBxlY4AAAMMAAABn3Bvc3QB9wD6AAAErAAAACBwcmVwa1uragAABMwAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACAC4A1%2F%2F%2FAAAALgDX%2F%2F%2F%2F0%2F8rAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAEAIAAAAKAAgAADAC8YAbAEELAD1LADELAC1LADELAAPLACELABPACwBBCwA9SwAxCwAjywABCwATwwMTczFSMggICAgAACAIAAVQLVAoAAAwAHAEYYsAEUALEAABMQsQAJ5LEAARMQsAQ8sQYI9LACPDABsQgBExCxAAP2sAc8sQEF9bAGPLIFBwAQ9LACPLEJA%2BaxBAX1sAM8EzMBIxEzASOAVQIAVVX%2BAFUCgP3VAiv91QAAAAABAAAAAQAA1XjOQV8PPPUAAwQA%2F%2F%2F%2F%2F9Y6E3P%2F%2F%2F%2F%2F1joTcwAA%2FyAEgAOrAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2FtgSAAAEAAAAAAAAAAAAAAAAAAAADA1IAVQDIACADVgCAAAAAAAAAACgAAABuAAAA3QABAAAAAwBeAAUAAAAAAAIAgAQAAAAAAAQAAN4AAAAAAAAAFQECAAAAAAAAAAEAEgAAAAAAAAAAAAIADgASAAAAAAAAAAMAMAAgAAAAAAAAAAQAEgBQAAAAAAAAAAUAFgBiAAAAAAAAAAYACQB4AAAAAAAAAAgAHACBAAEAAAAAAAEAEgAAAAEAAAAAAAIADgASAAEAAAAAAAMAMAAgAAEAAAAAAAQAEgBQAAEAAAAAAAUAFgBiAAEAAAAAAAYACQB4AAEAAAAAAAgAHACBAAMAAQQJAAEAEgAAAAMAAQQJAAIADgASAAMAAQQJAAMAMAAgAAMAAQQJAAQAEgBQAAMAAQQJAAUAFgBiAAMAAQQJAAYACQB4AAMAAQQJAAgAHACBAE0AYQB0AGgAIABGAG8AbgB0AFIAZQBnAHUAbABhAHIATQBhAHQAaABzACAARgBvAHIAIABNAG8AcgBlACAATQBhAHQAaAAgAEYAbwBuAHQATQBhAHQAaAAgAEYAbwBuAHQAVgBlAHIAcwBpAG8AbgAgADEALgAwTWF0aF9Gb250AE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAAAwAAAAAAAAH0APoAAAAAAAAAAAAAAAAAAAAAAAAAALkHEQAAjYUYALIAAAAVFBOxAAE%2F)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%40font-face%7Bfont-family%3A’brack_sm2882ad605b1e27be87c7468’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7PH4UAAADMAAAATmNtYXA3kjw6AAABHAAAADxjdnQgAQYDiAAAAVgAAAASZ2x5ZkyYQ7YAAAFsAAAAkWhlYWQLyR8fAAACAAAAADZoaGVhAq0XCAAAAjgAAAAkaG10eDEjA%2FUAAAJcAAAADGxvY2EAAEKZAAACaAAAABBtYXhwBJsEcQAAAngAAAAgbmFtZW7QvZAAAAKYAAAB5XBvc3QArQBVAAAEgAAAACBwcmVwu5WEAAAABKAAAAAHAAACDAGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg9AMD%2FP%2F8AAABVAABAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACI5wjn%2F%2F%2FAAAjnCOf%2F%2F%2FcZdxjAAEAAAAAAAAAAAFUAFQBAAArAIwAgACoAAcAAAACAAAAAADVAQEAAwAHAAAxMxEjFyM1M9XVq4CAAQHWqwABAAAAAABVAVgAAwAfGAGwAy%2BwADyxAgL1sAE8ALEDAD%2BwAjx8sQAG9bABPBEzESNVVQFY%2FqgAAQDXAAABLAFUAAMAIBgBsAUvsAE8sAI8sQAC9bADPACwAy%2BwAjyxAAH1sAE8EzMRI9dVVQFU%2FqwAAAAAAQAAAAEAAIsesexfDzz1AAMEAP%2F%2F%2F%2F%2FVre5k%2F%2F%2F%2F%2F9Wt7mT%2FgP%2F%2FAdYBWAAAAAoAAgABAAAAAAABAAABVP%2F%2FAAAXcP%2BA%2F4AB1gABAAAAAAAAAAAAAAAAAAAAAwDVAAABLAAAASwA1wAAAAAAAAAhAAAAWAAAAJEAAQAAAAMACgACAAAAAAACAIAEAAAAAAAEAABlAAAAAAAAABUBAgAAAAAAAAABACYAAAAAAAAAAAACAA4AJgAAAAAAAAADAEQANAAAAAAAAAAEACYAeAAAAAAAAAAFABYAngAAAAAAAAAGABMAtAAAAAAAAAAIABwAxwABAAAAAAABACYAAAABAAAAAAACAA4AJgABAAAAAAADAEQANAABAAAAAAAEACYAeAABAAAAAAAFABYAngABAAAAAAAGABMAtAABAAAAAAAIABwAxwADAAEECQABACYAAAADAAEECQACAA4AJgADAAEECQADAEQANAADAAEECQAEACYAeAADAAEECQAFABYAngADAAEECQAGABMAtAADAAEECQAIABwAxwBCAHIAYQBjAGsAZQB0AHMAIABzAG0AYQBsAGwAIABzAGkAegBlAFIAZQBnAHUAbABhAHIATQBhAHQAaABzACAARgBvAHIAIABNAG8AcgBlACAAQgByAGEAYwBrAGUAdABzACAAcwBtAGEAbABsACAAcwBpAHoAZQBCAHIAYQBjAGsAZQB0AHMAIABzAG0AYQBsAGwAIABzAGkAegBlAFYAZQByAHMAaQBvAG4AIAAyAC4AMEJyYWNrZXRzX3NtYWxsX3NpemUATQBhAHQAaABzACAARgBvAHIAIABNAG8AcgBlAAAAAAMAAAAAAAAAqgBVAAAAAAAAAAAAAAAAAAAAAAAAAAC5B%2F8AAo2FAA%3D%3D)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%40font-face%7Bfont-family%3A’bracketse552f5417ff4680c6b50499’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7RIisAAADMAAAATmNtYXBi7uzYAAABHAAAAExjdnQgBAkDLgAAAWgAAAASZ2x5Zo64f%2BkAAAF
-
-
Responses