Back to 课程

Maths Gcse Wjec-Eduqas Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Foundation
    2 主题
  2. Statistical-Diagrams- Wjec-Eduqas Foundation
    7 主题
  3. Statistics-Toolkit Wjec-Eduqas Foundation
    8 主题
  4. Tree-Diagrams-And-Combined-Probability Wjec-Eduqas Foundation
    2 主题
  5. Simple-Probability-Diagrams- Wjec-Eduqas Foundation
    4 主题
  6. Probability-Toolkit Wjec-Eduqas Foundation
    3 主题
  7. Transformations Wjec-Eduqas Foundation
    4 主题
  8. Vectors Wjec-Eduqas Foundation
    3 主题
  9. Pythagoras-And-Trigonometry Wjec-Eduqas Foundation
    5 主题
  10. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Foundation
    5 主题
  11. Volume-And-Surface-Area- Wjec-Eduqas Foundation
    3 主题
  12. Circles-Arcs-And-Sectors Wjec-Eduqas Foundation
    3 主题
  13. Area-And-Perimeter Wjec-Eduqas Foundation
    4 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci- Wjec-Eduqas Foundation
    5 主题
  15. 2D-And-3D-Shapes Wjec-Eduqas Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Foundation
    5 主题
  17. Geometry-Toolkit Wjec-Eduqas Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Wjec-Eduqas Foundation
    2 主题
  19. Standard-And-Compound-Units- Wjec-Eduqas Foundation
    5 主题
  20. Direct-And-Inverse-Proportion- Wjec-Eduqas Foundation
    1 主题
  21. Ratio-Problem-Solving- Wjec-Eduqas Foundation
    2 主题
  22. Ratio-Toolkit Wjec-Eduqas Foundation
    3 主题
  23. Sequences Wjec-Eduqas Foundation
    4 主题
  24. Solving-Inequalities- Wjec-Eduqas Foundation
    3 主题
  25. Real-Life-Graphs Wjec-Eduqas Foundation
    4 主题
  26. Graphs-Of-Functions Wjec-Eduqas Foundation
    3 主题
  27. Linear-Graphs Wjec-Eduqas Foundation
    3 主题
  28. Coordinate-Geometry Wjec-Eduqas Foundation
    3 主题
  29. Functions Wjec-Eduqas Foundation
    1 主题
  30. Forming-And-Solving-Equations Wjec-Eduqas Foundation
    2 主题
  31. Simultaneous-Equations Wjec-Eduqas Foundation
    1 主题
  32. Solving-Quadratic-Equations- Wjec-Eduqas Foundation
    1 主题
  33. Linear-Equations Wjec-Eduqas Foundation
    3 主题
  34. Algebraic-Reasoning Wjec-Eduqas Foundation
    1 主题
  35. Rearranging-Formulae Wjec-Eduqas Foundation
    1 主题
  36. Factorising Wjec-Eduqas Foundation
    3 主题
  37. Expanding-Brackets Wjec-Eduqas Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Wjec-Eduqas Foundation
    1 主题
  39. Algebra-Toolkit Wjec-Eduqas Foundation
    4 主题
  40. Using-A-Calculator Wjec-Eduqas Foundation
    1 主题
  41. Exact-Values Wjec-Eduqas Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Wjec-Eduqas Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Wjec-Eduqas Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Foundation
    4 主题
  45. Percentages Wjec-Eduqas Foundation
    5 主题
  46. Fractions Wjec-Eduqas Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Wjec-Eduqas Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Foundation
    6 主题
  49. Number-Toolkit Wjec-Eduqas Foundation
    9 主题
课 Progress
0% Complete

Exam code:C300

Combined probability

How do I calculate combined probabilities?

  • You can calculate probabilities of one event after another without needing tree diagrams

    • These are called combined (or successive) probabilities

  • There are two rules to learn

    • And means multiply and or means add

    • P(A and B) = P(A) x P(B)

    • P(AA or BB) = P(AA) + P(BB)

  • Try to rephrase each question using and / or

    • For example, when flipping a coin twice: 

      • P(two heads) = P(head and head)

      • P(both the same) = P(head and head or tail and tail) = P(HH) + P(TT)

  • Remember that P(not A) = 1 – P(A)

What does independent mean?

  • Independent events are events that do not affect each other

    • e.g. the probability of rolling a 6 on a fair dice and the probability of getting a head when flipping a coin

  • Be careful: questions ‘without replacement’ are not independent

    • e.g. the probability of taking a red card out of a pack, not replacing it, then finding the probability of taking a second red card out of the same pack

      • The first event affected the number of cards left for the second event

Worked Example

A box contains 3 blue counters and 8 red counters.
A counter is taken at random and its colour is noted.
The counter is put back into the box.
A second counter is then taken at random, and its colour is noted.

Work out the probability that

(a) both counters are red,

P(both red) = P(red and red) 
This is P(red) × P(red) using the ‘and rule’

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 8 over 11 cross times 8 over 11 end cell end table

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell bold 64 over bold 121 end cell end table

(b) the two counters are of different colours.

P(different colours) = P(blue and red or red and blue)
This is P(B and R) + P(R and B) using the ‘or rule’
This is P(B) × P(R) + P(R) × P(B) using the ‘and rule’ twice

table row blank blank cell 8 over 11 cross times 3 over 11 plus 3 over 11 cross times 8 over 11 end cell row blank equals cell 24 over 121 plus 24 over 121 end cell end table

table row blank blank cell bold 48 over bold 121 end cell end table

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注