Back to 课程

Computer Science GCES EDEXCEL

0% Complete
0/0 Steps
  1. Decomposition And Abstraction Edexcel
    2 主题
  2. Algorithms Edexcel
    11 主题
  3. Truth Tables Edexcel
    3 主题
  4. Binary Edexcel
    6 主题
  5. Data Representation Edexcel
    4 主题
  6. Data Storage And Compression Edexcel
    2 主题
  7. Hardware Edexcel
    5 主题
  8. Software Edexcel
    3 主题
  9. Programming Languages Edexcel
    2 主题
  10. Networks Edexcel
    7 主题
  11. Network Security Edexcel
    2 主题
  12. Environmental Issues Edexcel
    1 主题
  13. Ethical And Legal Issues Edexcel
    3 主题
  14. Cybersecurity Edexcel
    2 主题
  15. Develop Code Edexcel
    6 主题
  16. Constructs Edexcel
    4 主题
  17. Data Types And Data Structures Edexcel
    5 主题
  18. Operators Edexcel
    1 主题
  19. Subprograms Edexcel
    2 主题
课 4, 主题 6
In Progress

Converting Between Hexadecimal And Binary Edexcel

课 Progress
0% Complete

Exam code:1CP2

The Use of Hexadecimal in Computing

Why is hexadecimal used?

  • In Computer Science hexadecimal is often preferred when working with large values

  • It takes fewer digits to represent a given value in hexadecimal than in binary

    • 1 hexadecimal digit corresponds 4 bits (one nibble) and can represent 16 unique values (0-F)

  • It is beneficial to use hexadecimal over binary because:

    • The more bits there are in a binary number, the harder it makes for a human to read

    • Numbers with more bits are more prone to errors when being copied

  • Examples of where hexadecimal can be seen:

    • MAC addresses

    • Colour values

xaPxjdos_computer-mac-address
  • A typical MAC address consists of 12 hexadecimal digits, equivalent to 48 digits in in binary

    • AA:BB:CC:DD:EE:FF

    • 10101010:10111011:11001100:11011101:11101110:11111111

  • Writing down or performing calculations with 48 binary digits makes it very easy to make a mistake

hexcolours
  • A typical hexadecimal colour code consists of 6 hexadecimal digits, equivalent to 24 digits in binary

    • #66FF33 (green)

    • 01000010:11111111:00110011

Hexadecimal to Binary Conversion

How do you convert from hexadecimal to binary?

Example 1

  • To convert the hexadecimal number 5F to binary, first split the digits apart and convert each to a binary nibble (4 bits)

8

4

2

1

 

0

1

0

1

= 5

8

4

2

1

 

1

1

1

1

= 15 (F)

  • Join the 2 binary nibbles together to create an 8 bit binary number

128

64

32

16

8

4

2

1

0

1

0

1

1

1

1

1

  • Hexadecimal 5F is 01011111 in binary

Example 2

  • To convert the hexadecimal number 26 to binary, first split the digits apart and convert each to a binary nibble (4 bits)

8

4

2

1

 

0

0

1

0

= 2

8

4

2

1

 

0

1

1

0

= 6

  • Join the 2 binary nibbles together to create an 8 bit binary number

128

64

32

16

8

4

2

1

0

0

1

0

0

1

1

0

  • Hexadecimal 26 is 00100110 in binary

Binary to Hexadecimal Conversion

How do you convert from binary to hexadecimal?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Example 1

  • To convert the binary number 10110111 to hexadecimal, first split the 8 bit number into 2 binary nibbles

<td class=”border b

8

4

2

1

 

8

4

2

1

1

0

1

1

 

0

1

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注