Computer Science GCES AQA
-
Representing Algorithms Aqa4 主题
-
Efficiency Of Algorithms Aqa1 主题
-
Searching Algorithms Aqa3 主题
-
Sorting Algorithms Aqa3 主题
-
Data Types Aqa1 主题
-
Programming Concepts Aqa5 主题
-
Arithmetic Relational And Boolean Operations Aqa1 主题
-
Data Structures Aqa3 主题
-
String Manipulation Aqa1 主题
-
Random Number Generation Aqa1 主题
-
Structured Programming Aqa2 主题
-
Robust And Secure Programming Aqa4 主题
-
Number Bases Aqa2 主题
-
Converting Between Number Bases Aqa3 主题
-
Units Of Information Aqa9 主题
-
Hardware And Software Aqa4 主题
-
Boolean Logic Aqa3 主题
-
Programming Languages And Translators Aqa2 主题
-
Cpu Architecture Performance And Embedded Systems Aqa4 主题
-
Memory Aqa2 主题
-
Secondary Storage Aqa3 主题
-
Fundamentals Of Computer Networks Aqa8 主题
-
Fundamentals Of Cyber Security Aqa1 主题
-
Methods Of Preventing Cyber Security Threats Aqa1 主题
-
Relational Databases Aqa2 主题
-
Ethical Legal And Environmental Impacts Aqa2 主题
Converting Between Decimal And Binary Aqa
Exam code:8525
Decimal to Binary Conversion
Decimal to binary conversion
-
It is important to know the process of converting from decimal to binary to understand how computers interpret and process data
Example 1
-
To convert the decimal number 45 to binary, start by writing out the binary headings from right to left
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
-
Start at the leftmost empty column heading (128). Is the decimal number > column heading? (45 > 128) No, put a 0 in the 128 column. Repeat until you put a 1 under a heading. In this example it would be 32
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
0 |
0 |
1 |
|
|
|
|
|
-
Next subtract column heading from decimal value, 45-32 = 13
-
Repeat previous two steps until you have a value under each column heading
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
-
32 + 8 + 4 + 1 = 45
-
Decimal 45 is 00101101 in Binary
Examiner Tips and Tricks
Don’t forget to show your working! Data conversion questions will often be worth 2 marks, 1 for the answer and 1 for your working
Example 2
-
To convert the decimal number 213 to binary, start by writing out the binary headings from right to left
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
-
Start at the leftmost empty column heading (128). Is decimal number > column heading? (213 > 128) Yes, put a 1 under the heading.
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
1 |
|
|
|
|
|
|
|
-
Next subtract column heading from decimal value, 213-128 = 85
-
Repeat process until you have a value under each column heading
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
-
128 + 64 + 16 + 4 + 1 = 213
-
Decimal 213 is 11010101 in Binary
Examiner Tips and Tricks
At GCSE you will only be asked to convert from/to binary up to and including 8 binary digits (8 bits). That means you are working with a decimal range of 0-255 (00000000-11111111)
Binary to Decimal Conversion
Example 1
-
To convert the binary number 1011 to decimal, start by writing out the binary headings from right to left
|
8 |
4 |
2 |
1 |
|---|---|---|---|
|
|
|
|
|
-
Write in the binary digits under the headings from left to right
|
8 |
4 |
2 |
1 |
|---|---|---|---|
|
1 |
0 |
1 |
1 |
-
Add together any value with a 1 under it
-
(1 x 8) + (1 x 2) + (1 x 1) = 11
-
Binary 1011 is 11 in Decimal
Examiner Tips and Tricks
If you are converting from binary to decimal and the binary number ends in 1, the decimal answer must be an odd number!
Example 2
-
To convert the binary number 01100011 to decimal, start by writing out the binary headings from right to left
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
-
Write in the binary digits under the headings from left to right
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
-
Add together any value with a 1 under it
-
(1 x 64) + (1 x 32) + (1 x 2) + (1 x 1) = 99
-
Binary 01100011 is 99 in Decimal
Responses