Computer Science AS CIE
-
data-representation as5 主题
-
multimedia as3 主题
-
compression as2 主题
-
networks-and-the-internet as11 主题
-
computers-and-components as5 主题
-
logic-gates-and-logic-circuits as2 主题
-
central-processing-unit-cpu-architecture as6 主题
-
assembly-language- as4 主题
-
bit-manipulation as1 主题
-
operating-systems as3 主题
-
language-translators as2 主题
-
data-security as3 主题
-
data-integrity as1 主题
-
ethics-and-ownership as3 主题
-
database-concepts as3 主题
-
database-management-systems-dbms- as1 主题
-
data-definition-language-ddl-and-data-manipulation-language-dml as1 主题
-
computational-thinking-skills as1 主题
-
algorithms as4 主题
-
data-types-and-records as2 主题
-
arrays as2 主题
-
files as1 主题
-
introduction-to-abstract-data-types-adt as1 主题
-
programming-basics as1 主题
-
constructs as2 主题
-
structured-programming as1 主题
-
program-development-life-cycle as1 主题
-
program-design- as2 主题
-
program-testing-and-maintenance as3 主题
binary-prefixes as
Exam code:9618
Binary prefixes
What is a binary prefix?
-
A binary prefix is a unit prefix used to indicate multiples of bytes in binary
-
Consider the word kilobyte, “kilo” is the prefix
-
Bytes are the smallest unit of data that can be stored in a computer so there needs to be a way of expressing bytes in larger multiples
Denary prefixes
-
A common way of expressing multiples of bytes is to use denary prefixes:
|
Denary unit |
Equivalent size (bytes) |
|---|---|
|
1 kilobyte (1 KB) |
1000 |
|
1 megabyte (1 MB) |
1,000,000 |
|
1 gigabyte (1 GB) |
1,000,000,000 |
|
1 terabyte (1 TB) |
1,000,000,000,000 |
|
1 petabyte (1 PB) |
1,000,000,000,000,000 |
-
This system relies on the assumption that 1 kilo = 1000
-
This assumption is based on the denary (base 10) number system
-
E.g. a 1 GB hard drive can store 1 x 109 bytes
-
Binary prefixes
-
However, computers use the binary (base 2) number system so the denary system is technically inaccurate when describing storage
-
To be precise, expressing multiples of bytes is done using binary prefixes:
|
Binary unit |
Number of bytes (base 2) |
Equivalent size (base 10) |
|---|---|---|
|
1 kibibyte (1 KiB) |
210 |
1024 |
|
1 mebibyte (1 MiB) |
220 |
1,048,576 |
|
1 gibibyte (1 GiB) |
230 |
1,073,741,824 |
|
1 tebibyte (1 TiB) |
240 |
1,099,511,627,776 |
|
1 pebibyte (1 PiB) |
250 |
1,125,899,906,842,624 |
-
Notice the prefixes change depending on the system being used, e.g. kilo (denary) vs kibi (binary)
Why does it matter?
-
The importance of the system being used depends on how precise you need to be
-
Identifying the total amount of memory (RAM) available to a computer must be accurate (use binary prefixes)
-
E.g. 16 GiB RAM can store 16 x 230 bytes of data (17,179,869,184 bytes)
-
-
when describing storage space, a rough estimate is acceptable (use denary prefixes)
-
E.g. a 16 GB memory stick can store 16 x 109 bytes of data (16,000,000,000 bytes)
-
Responses