课 Progress
0% Complete

PGFs of standard distributions

What are the PGFs of standard distributions?

  • You are given the following PGFs in the Formulae Booklet:

Distribution of X

straight P open parentheses X equals x close parentheses

P.G.F.

Binomial straight B open parentheses n comma p close parentheses

open parentheses table row n row x end table close parentheses p to the power of x open parentheses 1 minus p close parentheses to the power of n minus x end exponent

open parentheses 1 minus p plus p t close parentheses to the power of n

Poisson Po open parentheses lambda close parentheses

straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction

straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent

Geometric Geo open parentheses p close parentheses on 1, 2, …

p open parentheses 1 minus p close parentheses to the power of x minus 1 end exponent

fraction numerator p t over denominator 1 minus open parentheses 1 minus p close parentheses t end fraction

Negative binomial on rr plus 1, …

open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r open parentheses 1 minus p close parentheses to the power of x minus r end exponent

open parentheses fraction numerator p t over denominator 1 minus open parentheses 1 minus p close parentheses t end fraction close parentheses to the power of r

How do I find the PGF of a binomial distribution?

  • If X tilde straight B open parentheses n comma p close parentheses then straight G subscript X open parentheses t close parentheses equals open parentheses q plus p t close parentheses to the power of n where q equals 1 minus p

    • You can use this to to prove, by differentiation, that

      • straight E open parentheses X close parentheses equals n p

      • Var open parentheses X close parentheses equals n p q

  • To derive the PGF, create a probability distribution table 

    • Using the binomial probability function open parentheses table row n row x end table close parentheses p to the power of x q to the power of n minus x end exponent

    • From x equals 0 to x equals n

    • Showing all powers clearly

x

0

1

2

n

P open parentheses X equals x close parentheses

open parentheses table row n row 0 end table close parentheses p to the power of 0 q to the power of n

open parentheses table row n row 1 end table close parentheses p to the power of 1 q to the power of n minus 1 end exponent

open parentheses table row n row 2 end table close parentheses p squared q to the power of n minus 2 end exponent

open parentheses table row n row n end table close parentheses p to the power of n q to the power of 0

  • Write down the PGF as a polynomial

    • straight G subscript X open parentheses t close parentheses equals open parentheses table row n row 0 end table close parentheses p to the power of 0 q to the power of n t to the power of 0 plus open parentheses table row n row 1 end table close parentheses p to the power of 1 q to the power of n minus 1 end exponent t to the power of 1 plus open parentheses table row n row 2 end table close parentheses p squared q to the power of n minus 2 end exponent t squared plus... plus open parentheses table row n row n end table close parentheses p to the power of n q to the power of 0 t to the power of n

  • Group the p and t together in brackets

    • straight G subscript X open parentheses t close parentheses equals open parentheses table row n row 0 end table close parentheses open parentheses p t close parentheses to the power of 0 q to the power of n plus open parentheses table row n row 1 end table close parentheses open parentheses p t close parentheses to the power of 1 q to the power of n minus 1 end exponent plus open parentheses table row n row 2 end table close parentheses open parentheses p t close parentheses squared q to the power of n minus 2 end exponent plus... plus open parentheses table row n row n end table close parentheses open parentheses p t close parentheses to the power of n q to the power of 0

  • Spot that this is the binomial expansion of open parentheses q plus p t close parentheses to the power of n

    • Since open parentheses a plus b close parentheses to the power of n equals open parentheses table row n row 0 end table close parentheses a to the power of 0 b to the power of n plus open parentheses table row n row 1 end table close parentheses a to the power of 1 b to the power of n minus 1 end exponent plus open parentheses table row n row 2 end table close parentheses a squared b to the power of n minus 2 end exponent plus... plus open parentheses table row n row n end table close parentheses a to the power of n b to the power of 0

    • So straight G subscript X open parentheses t close parentheses equals open parentheses q plus p t close parentheses to the power of n space end exponent

  • The proof can also be done in summation (sigma) notation

    • straight G subscript X open parentheses t close parentheses equals sum from x equals 0 to n of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals 0 to n of space t to the power of x open parentheses table row n row x end table close parentheses p to the power of x q to the power of n minus x end exponent equals sum from x equals 0 to n of space open parentheses table row n row x end table close parentheses open parentheses p t close parentheses to the power of x q to the power of n minus x end exponent equals open parentheses q plus p t close parentheses to the power of n

How do I find the PGF of a Poisson distribution?

  • If X tilde Po open parentheses lambda close parentheses then straight G subscript X open parentheses t close parentheses equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent

    • You can use this to to prove, by differentiation, that

      • straight E open parentheses X close parentheses equals lambda

      • Var open parentheses X close parentheses equals lambda

  • To derive the PGF, create a probability distribution table 

    • Using the Poisson probability function straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction

    • From x equals 0x to infinity

    • Showing all powers clearly

    x

    0

    1

    2

    3

    P open parentheses X equals x close parentheses

    straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 0 over denominator 0 factorial end fraction

    straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 1 over denominator 1 factorial end fraction

    straight e to the power of negative lambda end exponent space fraction numerator lambda squared over denominator 2 factorial end fraction

    straight e to the power of negative lambda end exponent space fraction numerator lambda cubed over denominator 3 factorial end fraction

  • Write down the PGF as a polynomial

    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 0 over denominator 0 factorial end fraction t to the power of 0 plus straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 1 over denominator 1 factorial end fraction t to the power of 1 plus straight e to the power of negative lambda end exponent space fraction numerator lambda squared over denominator 2 factorial end fraction t squared plus straight e to the power of negative lambda end exponent space fraction numerator lambda cubed over denominator 3 factorial end fraction t cubed plus...

  • Group the lambda and t together in brackets

    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses to the power of 0 over denominator 0 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses to the power of 1 over denominator 1 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses squared over denominator 2 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses cubed over denominator 3 factorial end fraction plus...

  • Factorise out straight e to the power of negative lambda end exponent

    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space open square brackets fraction numerator open parentheses lambda t close parentheses to the power of 0 over denominator 0 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses to the power of 1 over denominator 1 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses squared over denominator 2 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses cubed over denominator 3 factorial end fraction plus... close square brackets

  • Spot that the Maclaurin series of straight e to the power of lambda t end exponent is inside the brackets

    • Since straight e to the power of x equals 1 plus x plus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x cubed over denominator 3 factorial end fraction plus...

    • So straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent straight e to the power of lambda t end exponent

  • Add the powers then factorise out lambda

    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent to the power of plus lambda t end exponent equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent

  • The proof can also be done in summation (sigma) notation

    • straight G subscript X open parentheses t close parentheses equals sum from x equals 0 to infinity of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals 0 to infinity of space t to the power of x straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction equals straight e to the power of negative lambda end exponent sum from x equals 0 to infinity of space space fraction numerator open parentheses lambda t close parentheses to the power of x over denominator x factorial end fraction equals straight e to the power of negative lambda end exponent to the power of plus lambda t end exponent equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent

How do I find the PGF of a geometric distribution?

  • If X tilde Geo open parentheses p close parentheses then straight G subscript X open parentheses t close parentheses equals fraction numerator p t over denominator 1 minus q t end fraction where q equals 1 minus p

    • You can use this to to prove, by differentiation, that

      • straight E open parentheses X close parentheses equals 1 over p

      • Var open parentheses X close parentheses equals q over p squared

  • To derive the PGF, create a probability distribution table 

    • Using the Geometric probability function p q to the power of x minus 1 end exponent

    • From x equals 1 to infinity (x not equal to 0)

    • Simplify the powers 

    • x

      1

      2

      3

      4

      P open parentheses X equals x close parentheses

      p

      p q

      p q squared

      p q cubed

  • Write down the PGF as a polynomial

    • straight G subscript X open parentheses t close parentheses equals p t to the power of 1 plus p q t squared plus p q squared t cubed plus p q cubed t to the power of 4 plus...

  • Spot that this is an infinite geometric series with first term p t and common ratio q t

    • Use S subscript infinity equals fraction numerator a over denominator 1 minus r end fraction

    • So straight G subscript X open parentheses t close parentheses equals fraction numerator p t over denominator 1 minus q t end fraction

How do I find the PGF of a negative binomial distribution?

  • If X tilde Negative space straight B open parentheses r comma p close parentheses then straight G subscript X open parentheses t close parentheses equals open parentheses fraction numerator p t over denominator 1 minus q t end fraction close parentheses to the power of r where q equals 1 minus p

    • You can use this to to prove, by differentiation, that

      • straight E open parentheses X close parentheses equals r over p

      • Var open parentheses X close parentheses equals fraction numerator r q over denominator p squared end fraction

  • To derive the PGF, the proof is best done in summation (sigma) notation 

    • Use the negative binomial probability function open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent

      • From x equals r to infinity

    • straight G subscript X open parentheses t close parentheses equals sum from x equals r to infinity of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals r to infinity of space t to the power of x open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent t to the power of x

  • To proceed, you will be given in the question the result that sum from x equals r to infinity of open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses a to the power of x minus r end exponent equals open parentheses 1 minus a close parentheses to the power of negative r end exponent

    • Write t to the power of x as t to the power of x minus r end exponent t to the power of r to group q and t together in brackets

      • straight G subscript X open parentheses t close parentheses equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent t to the power of x minus r end exponent t to the power of r equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses open parentheses q t close parentheses to the power of x minus r end exponent p to the power of r t to the power of r

    • Factorise p to the power of r t to the power of r out (as it does not depend on x)

      • straight G subscript X open parentheses t close parentheses equals p to the power of r t to the power of r sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses open parentheses q t close parentheses to the power of x minus r end exponent

    • Use the result given, where a equals q t

      • straight G subscript X open parentheses t close parentheses equals p to the power of r t to the power of r open parentheses 1 minus q t close parentheses to the power of negative r end exponent

    • Write as one bracket to the power r

      • straight G subscript X open parentheses t close parentheses equals open parentheses fraction numerator p t over denominator 1 minus q t end fraction close parentheses to the power of r

Examiner Tips and Tricks

  • The words derive or from first principles mean you have to prove the PGF (not quote it)

Worked Example

Write down the probability generating function for the distribution X tilde Geo open parentheses p close parentheses and use it to prove that Var open parentheses X close parentheses equals fraction numerator 1 minus p over denominator p squared end fraction.

pgfs-of-standard-distributions-1
pgfs-of-standard-distributions-2

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注