课 Progress
0% Complete

Constructing PGFs

What are probability generating functions (PGFs)?

  • A probability generating function, straight G subscript X open parentheses t close parentheses,  is a polynomial in t 

    • The powers of t are the values of X

    • The coefficients are the corresponding probabilities of X

  • For example:

    • x 0 1 4 5 P open parentheses X equals x close parentheses 0.4 0.3 0.2 0.1

    • The PGF is straight G subscript X open parentheses t close parentheses equals 0.4 t to the power of 0 plus 0.3 t to the power of 1 plus 0.2 t to the power of 4 plus 0.1 t to the power of 5 This simplifies to straight G subscript X open parentheses t close parentheses equals 1 over 10 open parentheses 4 plus 3 t plus 2 t to the power of 4 plus t to the power of 5 close parentheses

  • The variable t is called a dummy variable

    • It is used to create a polynomial structure

    • Do not confuse it with X

  • Coefficients can never be negative

    • They are probabilities!

What is the value of G(1)?

  • straight G subscript X open parentheses 1 close parentheses equals 1 always

  • This is because substituting t equals 1 into a PGF:

    • Turns all powers of t into 1 

    • Leaves the sum of all probabilities which equals 1

    • For example z
      straight G subscript X open parentheses 1 close parentheses equals 0.4 plus 0.3 plus 0.2 plus 0.1 equals 1

What is E(tX)?

  • straight G subscript X open parentheses t close parentheses equals straight E open parentheses t to the power of X close parentheses is the formal definition of a PGF given in the Formulae Booklet

    • Recall that straight E open parentheses X close parentheses equals stack sum space with blank below x space straight P open parentheses X equals x close parentheses is the expectation of X

      • Th expectation of a function of X is straight E open parentheses straight g open parentheses X close parentheses close parentheses equals sum for blank of straight g open parentheses x close parentheses space straight P open parentheses X equals x close parentheses

    • Choosing the function to be straight g open parentheses X close parentheses equals t to the power of X gives straight E open parentheses t to the power of X close parentheses equals stack sum space with blank below t to the power of x space straight P open parentheses X equals x close parentheses

      • This is the sum of powers of t multiplied by their corresponding probabilities

      • That is the probability generating function of X

Examiner Tips and Tricks

  • Don’t forget to use straight G subscript X open parentheses 1 close parentheses equals 1 in harder algebraic questions!

Worked Example

A discrete random variable, X, is given by the probability distribution below.

x

3

4

6

10

11

P open parentheses X equals x close parentheses

1 over 8

1 over 16

1 fourth

p

3 over 8

Find the probability generating function of X.

constructing-pgfs

Finding probabilities from PGFs

How do I find probabilities from PGFs?

  • Fully expand the PGF

    • 1 fourth open parentheses 1 plus t close parentheses squared expands to 1 fourth plus 1 half t plus 1 fourth t squared

  • Read off the relevant coefficient 

    • straight P open parentheses X equals 2 close parentheses is the coefficient of t squared

      • straight P open parentheses X equals 2 close parentheses equals 1 fourth

  • Remember straight G open parentheses 1 close parentheses equals 1

When can I use the General Binomial Theorem?

  • When PGFs can be written in the form open parentheses 1 plus... close parentheses to the power of n

    • Where n is a positive or negative rational number

    • You may have to rearrange to get this form

  • Use the General Binomial Theorem to expand the PGF

    • Simplify each term

    • Read off probabilities

When can I use Maclaurin Series?

  • When a PGF is written as a function that is not a polynomial

  • For example

    • straight G subscript X open parentheses t close parentheses equals negative fraction numerator 1 over denominator ln space 2 end fraction ln open parentheses 1 minus 0.5 t close parentheses

    • A Maclaurin Series is given by ln open parentheses 1 plus x close parentheses equals x minus x squared over 2 plus x cubed over 3 minus...

    • Use it to expand the PGF

      • straight G subscript X open parentheses t close parentheses equals negative fraction numerator 1 over denominator ln 2 end fraction open parentheses open parentheses negative 0.5 t close parentheses minus open parentheses negative 0.5 t close parentheses squared over 2 plus open parentheses negative 0.5 t close parentheses cubed over 3 minus... close parentheses

    • Then simplify each term

Worked Example

A probability generating function for a discrete random variable X is given in the form 

straight G subscript X open parentheses t close parentheses equals t squared over open parentheses 5 minus begin display style 4 end style t close parentheses squared

Find straight P open parentheses X equals 4 close parentheses, showing your working clearly.

finding-probabilities-from-pgfs

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注