Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
angle-between-lines
Scalar product
The scalar product is an important link between the algebra of vectors and the trigonometry of vectors. We shall see that the scalar product is somewhat comparable to the operation of multiplication on real numbers.
What is the scalar (dot) product?
-
The scalar product between two vectors a and b is represented by
-
This is also called the dot product because of the symbol used
-
-
The scalar product between two vectors
and
is defined as
-
The result of taking the scalar product of two vectors is a real number
-
i.e. a scalar
-
-
For example,
<img alt=”open parentheses 3 bold i minus bold k close parentheses times open parentheses 2 bold i plus 9 bold j plus bold k close parentheses equals 3 cross times 2 plus 0 cross times 9 plus open parentheses negative 1 close parentheses cross times 1 equals 6 plus 0 minus 1 equals 5″ data-mathml='<math ><semantics><mrow><mfenced separators=”|”><mrow><mn>3</mn><mi mathvariant=”bold”>i</mi><mo>-</mo><mi mathvariant=”bold”>k</mi></mrow></mfenced><mo>·</mo><mfenced separators=”|”><mrow><mn>2</mn><mi mathvariant=”bold”>i</mi><mo>+</mo><mn>9</mn><mi mathvariant=”bold”>j</mi><mo>+</mo><mi mathvariant=”bold”>k</mi></mrow></mfenced><mo>=</mo><mn>3</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>9</mn><mo>+</mo><mfenced separators=”|”><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mn>1</mn><mo>=</mo><mn>6</mn><mo>+</mo><mn>0</mn><mo>-</mo><mn>1</mn><mo>=</mo><mn>5</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%22436%22%20wrs%3Abaseline%3D%2216%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfenced%20separators%3D%22%7C%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3Ei%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%20mathvariant%3D%22bold%22%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%26%23xB7%3B%3C%2Fmo%3E%3Cmfenced%20separators%3D%22%7C%22%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3Ei%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3E
Responses