Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
differentiating-and-integrating-hyperbolic-functions
Differentiating hyperbolic functions
What are the derivatives of the hyperbolic functions?
-
-
-
-
These are given in the formulae booklet
-
You can prove them by differentiating the definitions involving e
-
-
Notice that they are similar to the derivatives of the circular trig functions
-
Be careful of the difference between the derivatives of cosx and coshx
-
One involves a negative sign and the other does not
-
-
How do I differentiate expressions involving hyperbolic functions?
-
The following differentiation skills may be required
-
Chain rule
-
Product rule
-
Quotient rule
-
Implicit differentiation
-
-
Questions may involve showing or proving given results or finding unknown constants
-
It is common that derivatives can be written in terms of the original function
-
This is due to the derivative of ex also being ex giving rise to the repetition of terms
-
What are the derivatives of the inverse hyperbolic functions?
-
<img alt=”fraction numerator d over denominator d x end fraction open parentheses arsinh space x close parentheses equals fraction numerator 1 over denominator square root of 1 plus x squared end root end fraction” data-mathml='<math ><semantics><mrow><mfrac><mo>d</mo><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mi>arsinh</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”52″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2252%22%20width%3D%22185%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmo%3Ed%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3Ed%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi%3Earsinh%3C%2Fmi%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmsqrt%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1564b4c0e54101ac57a0cb68c16’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABH
Responses