Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

Differentiating hyperbolic functions

What are the derivatives of the hyperbolic functions?

  • fraction numerator d over denominator d x end fraction open parentheses sinh x close parentheses equals cosh x

  • fraction numerator d over denominator d x end fraction open parentheses cosh x close parentheses equals sinh x

  • fraction numerator d over denominator d x end fraction open parentheses tanh x close parentheses equals sech squared x

  • These are given in the formulae booklet

    • You can prove them by differentiating the definitions involving e

  • Notice that they are similar to the derivatives of the circular trig functions

    • Be careful of the difference between the derivatives of cosand coshx

      • One involves a negative sign and the other does not

How do I differentiate expressions involving hyperbolic functions?

  • The following differentiation skills may be required

    • Chain rule

    • Product rule

    • Quotient rule

    • Implicit differentiation

  • Questions may involve showing or proving given results or finding unknown constants

  • It is common that derivatives can be written in terms of the original function

    • This is due to the derivative of ex also being ex giving rise to the repetition of terms

What are the derivatives of the inverse hyperbolic functions?

  • <img alt=”fraction numerator d over denominator d x end fraction open parentheses arsinh space x close parentheses equals fraction numerator 1 over denominator square root of 1 plus x squared end root end fraction” data-mathml='<math ><semantics><mrow><mfrac><mo>d</mo><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mi>arsinh</mi><mo>&#160;</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”52″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2252%22%20width%3D%22185%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmo%3Ed%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3Ed%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi%3Earsinh%3C%2Fmi%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmsqrt%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1564b4c0e54101ac57a0cb68c16’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABH

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注