Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

De Moivre’s theorem

What is de Moivre’s theorem?

  • de Moivre’s theorem can be used to find powers of complex numbers

  • It states that for z to the power of n space equals space left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n blank equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis blank

    • Where

      • z ≠ 0

      • r is the modulus, |z|, r ∈ ℝ+

      • θ is the argument, arg z, θ ∈ ℝ

      • n ∈ ℝ

  • In Euler’s form this is simply:

    • open parentheses r straight e to the power of straight i theta end exponent close parentheses to the power of n equals blank r to the power of n straight e to the power of straight i n theta end exponent

  • In words de Moivre’s theorem tells us to raise the modulus by the power of n and multiply the argument by n

  • In the formula booklet de Moivre’s theorem is given in both polar and Euler’s form:

    • <img alt=”left square bracket r left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis equals r to the power of n straight e to the power of straight i n theta end exponent” data-mathml='<math ><semantics><mrow><mo>[</mo><mi>r</mi><mo>(</mo><mi>cos</mi><mo>⁡</mo><mi>θ</mi><mo>+</mo><mi>isin</mi><mo>⁡</mo><mrow><mi>θ</mi><mo>)</mo><msup><mo>]</mo><mi>n</mi></msup></mrow><mo>=</mo><msup><mi>r</mi><mi>n</mi></msup><mo>(</mo><mi>cos</mi><mo>⁡</mo><mi>n</mi><mi>θ</mi><mo>+</mo><mi>isin</mi><mo>⁡</mo><mrow><mi>n</mi><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>r</mi><mi>n</mi></msup><msup><mi mathvariant=”normal”>e</mi><mrow><mi mathvariant=”normal”>i</mi><mi>n</mi><mi>θ</mi></mrow></msup></mrow></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22334%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eisin%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmsup%3E%3Cmo%3E%5D%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eisin%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmsup%3E%3Cmi%20mathvariant%3D%22normal%22%3Ee%3C%2Fmi%3E%3Cmrow%3E%3Cmi%20mathvariant%3D%22normal%22%3Ei%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math12ed72e0d2d50af08c235c494fe’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABK2hlYWQQC2qxAAACwAAAADZoaGVhCGsXSAAAAvgAAAAkaG10eE2rRkcAAAMcAAAADGxvY2EAHTwYAAADKAAAABBtYXhwBT0FPgAAAzgAAAAgbmFtZaBxlY4AAANYAAABn3Bvc3QB9wD6AAAE%2BAAAACBwcmVwa1uragAABRgAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACACsAPf%2F%2FAAAAKwA9%2F%2F%2F%2F1v%2FFAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAEAgABVAtUCqwALAEkBGLIMAQEUExCxAAP2sQEE9bAKPLEDBfWwCDyxBQT1sAY8sQ0D5gCxAAATELEBBuSxAQETELAFPLEDBOWxCwX1sAc8sQkE5TEwEyERMxEhFSERIxEhgAEAVQEA%2FwBV%2FwABqwEA%2FwBW%2FwABAAACAIAA6wLVAhUAAwAHAGUYAbAIELAG1LAGELAF1LAIELAB1LABELAA1LAGELAHPLAFELAEPLABELACPLAAELADPACwCBCwBtSwBhCwB9SwBxCwAdSwARCwAtSwBhCwBTywBxCwBDywARCwADywAhCwAzwxMBMhNSEdASE1gAJV%2FasCVQHAVdVVVQAAAQAAAAEAANV4zkFfDzz1AAMEAP%2F%2F%2F%2F%2FWOhNz%2F%2F%2F%2F%2F9Y6E3MAAP8gBIADqwAAAAoAAgABAAAAAAABAAAD6P9qAAAXcAAA%2F7YEgAABAAAAAAAAAAAAAAAAAAAAAwNSAFUDVgCAA1YAgAAAAAAAAAAoAAAAoQAAASsAAQAAAAMAXgAFAAAAAAACAIAEAAAAAAAEAADeAAAAAAAAABUBAgAAAAAAAAABABIAAAAAAAAAAAACAA4AEgAAAAAAAAADADAAIAAAAAAAAAAEABIAUAAAAAAAAAAFABYAYgAAAAAAAAAGAAkAeAAAAAAAAAAIABwA

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注