De Moivre’s theorem
What is de Moivre’s theorem?
-
de Moivre’s theorem can be used to find powers of complex numbers
-
It states that for
-
Where
-
z ≠ 0
-
r is the modulus, |z|, r ∈ ℝ+
-
θ is the argument, arg z, θ ∈ ℝ
-
n ∈ ℝ
-
-
-
In Euler’s form this is simply:
-
-
In words de Moivre’s theorem tells us to raise the modulus by the power of n and multiply the argument by n
-
In the formula booklet de Moivre’s theorem is given in both polar and Euler’s form:
-
<img alt=”left square bracket r left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis equals r to the power of n straight e to the power of straight i n theta end exponent” data-mathml='<math ><semantics><mrow><mo>[</mo><mi>r</mi><mo>(</mo><mi>cos</mi><mo></mo><mi>θ</mi><mo>+</mo><mi>isin</mi><mo></mo><mrow><mi>θ</mi><mo>)</mo><msup><mo>]</mo><mi>n</mi></msup></mrow><mo>=</mo><msup><mi>r</mi><mi>n</mi></msup><mo>(</mo><mi>cos</mi><mo></mo><mi>n</mi><mi>θ</mi><mo>+</mo><mi>isin</mi><mo></mo><mrow><mi>n</mi><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>r</mi><mi>n</mi></msup><msup><mi mathvariant=”normal”>e</mi><mrow><mi mathvariant=”normal”>i</mi><mi>n</mi><mi>θ</mi></mrow></msup></mrow></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22334%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eisin%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmsup%3E%3Cmo%3E%5D%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eisin%3C%2Fmi%3E%3Cmo%3E%26%23×2061%3B%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmsup%3E%3Cmi%20mathvariant%3D%22normal%22%3Ee%3C%2Fmi%3E%3Cmrow%3E%3Cmi%20mathvariant%3D%22normal%22%3Ei%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3Cmi%3E%26%23x3B8%3B%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math12ed72e0d2d50af08c235c494fe’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABK2hlYWQQC2qxAAACwAAAADZoaGVhCGsXSAAAAvgAAAAkaG10eE2rRkcAAAMcAAAADGxvY2EAHTwYAAADKAAAABBtYXhwBT0FPgAAAzgAAAAgbmFtZaBxlY4AAANYAAABn3Bvc3QB9wD6AAAE%2BAAAACBwcmVwa1uragAABRgAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACACsAPf%2F%2FAAAAKwA9%2F%2F%2F%2F1v%2FFAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAEAgABVAtUCqwALAEkBGLIMAQEUExCxAAP2sQEE9bAKPLEDBfWwCDyxBQT1sAY8sQ0D5gCxAAATELEBBuSxAQETELAFPLEDBOWxCwX1sAc8sQkE5TEwEyERMxEhFSERIxEhgAEAVQEA%2FwBV%2FwABqwEA%2FwBW%2FwABAAACAIAA6wLVAhUAAwAHAGUYAbAIELAG1LAGELAF1LAIELAB1LABELAA1LAGELAHPLAFELAEPLABELACPLAAELADPACwCBCwBtSwBhCwB9SwBxCwAdSwARCwAtSwBhCwBTywBxCwBDywARCwADywAhCwAzwxMBMhNSEdASE1gAJV%2FasCVQHAVdVVVQAAAQAAAAEAANV4zkFfDzz1AAMEAP%2F%2F%2F%2F%2FWOhNz%2F%2F%2F%2F%2F9Y6E3MAAP8gBIADqwAAAAoAAgABAAAAAAABAAAD6P9qAAAXcAAA%2F7YEgAABAAAAAAAAAAAAAAAAAAAAAwNSAFUDVgCAA1YAgAAAAAAAAAAoAAAAoQAAASsAAQAAAAMAXgAFAAAAAAACAIAEAAAAAAAEAADeAAAAAAAAABUBAgAAAAAAAAABABIAAAAAAAAAAAACAA4AEgAAAAAAAAADADAAIAAAAAAAAAAEABIAUAAAAAAAAAAFABYAYgAAAAAAAAAGAAkAeAAAAAAAAAAIABwA
-
Responses