Computer-science_A-level_Cie
-
computers-and-components6 主题
-
logic-gates-and-logic-circuits2 主题
-
central-processing-unit-cpu-architecture6 主题
-
assembly-language-4 主题
-
bit-manipulation1 主题
-
operating-systems3 主题
-
language-translators2 主题
-
data-security3 主题
-
data-integrity1 主题
-
ethics-and-ownership3 主题
-
database-concepts3 主题
-
database-management-systems-dbms-1 主题
-
data-definition-language-ddl-and-data-manipulation-language-dml1 主题
-
computational-thinking-skills1 主题
-
algorithms14 主题
-
data-types-and-records2 主题
-
arrays2 主题
-
files1 主题
-
introduction-to-abstract-data-types-adt1 主题
-
programming-basics1 主题
-
constructs2 主题
-
structured-programming1 主题
-
program-development-life-cycle2 主题
-
program-design-2 主题
-
program-testing-and-maintenance3 主题
-
user-defined-data-types1 主题
-
file-organisation-and-access-3 主题
-
floating-point-numbers-representation-and-manipulation3 主题
-
protocols2 主题
-
circuit-switching-packet-switching1 主题
-
processors-parallel-processing-and-virtual-machines5 主题
-
boolean-algebra-and-logic-circuits4 主题
-
purposes-of-an-operating-system-os3 主题
-
translation-software3 主题
-
encryption-encryption-protocols-and-digital-certificates3 主题
-
artificial-intelligence-ai4 主题
-
recursion1 主题
-
programming-paradigms4 主题
-
object-oriented-programming7 主题
-
file-processing-and-exception-handling2 主题
-
data-representation5 主题
-
multimedia3 主题
-
compression2 主题
-
networks-and-the-internet11 主题
boolean-algebra
Boolean algebra
What is Boolean algebra?
-
Boolean algebra is a mathematical system used to manipulate Boolean values
-
Complex expressions can be made simpler using the rules of Boolean algebra
-
This is a more powerful simplification method than Karnaugh maps and can simplify expressions that Karnaugh maps cannot
-
There are various different rules that you need to learn and that can then be applied to certain expressions to simplify them
-
Combining these rules can mean that complex expressions can be reduced to much simpler ones
General rules
-
General AND rules
-
X AND 0 = 0
-
X AND 1 = X
-
X AND A = X
-
NOT X AND X = 0
-
-
Note, the value ox X is unknown and it is used as a placeholder
-
Therefore X AND 1 = X means that the output will be whatever the value of X is
-
General OR rules
-
X OR 0 = X
X OR 1 = 1
X OR A = X
NOT X OR X = 1
-
Boolean algebra notation
-
In Boolean algebra, expressions are written using shorthand notation:
|
Symbol |
Meaning |
Example |
Explanation |
|---|---|---|---|
|
|
AND |
|
True only if both A and B are 1 |
|
|
OR |
|
True if either A or B is 1 |
|
|
NOT / complement |
|
True if A is 0, False if A is 1 |
|
|
Brackets / grouping |
|
Do A OR B first, then AND with C |
Examiner Tips and Tricks
A dot (·) for AND is often omitted, so AB means A AND B
-
A line drawn above a variable or expression means that the value is inverted or negated
-
It’s the NOT of that value
|
Notation |
Meaning |
Explanation |
|---|---|---|
|
|
NOT A |
True if A is False, False if A is True |
|
|
A AND (NOT B) |
B is negated before the AND operation |
|
|
NOT (A OR B) |
The entire OR expression is negated (use De Morgan) |
|
|
NOT (A AND B AND C) |
All values are ANDed together, then the result is negated |
-
When you see multiple horizontal lines, for example:

-
It means the whole expression is negated, not just one part
-
Always apply De Morgan’s Law starting with the outermost line first
De Morgan’s Law
What is De Morgan’s Law?
-
De Morgan’s Laws are used to simplify Boolean expressions involving negation of conjunctions (AND) or disjunctions (OR)
-
They are particularly useful for rewriting logic circuits using only NAND or NOR gates
-
There are two key rules:
-
NOT (A AND B) is equivalent to (NOT A) OR (NOT B)
-
NOT (A OR B) is equivalent to (NOT A) AND (NOT B)
<img alt=”stack A space plus space B with bar on top equals top enclose A space. space top enclose B” data-mathml=”<math ><semantics><mrow><mover><mrow><mi>A</mi><mo> </mo><mo>+</mo><mo> </mo><mi>B</mi></mrow><mo>¯</mo></mover><mo>=</mo><menclose notation=”top”><mi>A</mi></menclose><mo> </mo><mo>.</mo><mo> </mo><menclose notation=”top”><mi>B</mi></menclose></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true,”toolbar”:”<toolbar ref=’general’><tab ref=’general’><removeItem ref=’setColor’/><removeItem ref=’bold’/><removeItem ref=’italic’/><removeItem ref=’autoItalic’/><removeItem ref=’setUnicode’/><removeItem ref=’mtext’ /><removeItem ref=’rtl’/><removeItem ref=’forceLigature’/><removeItem ref=’setFontFamily’ /><removeItem ref=’setFontSize’/></tab></toolbar>”}</annotation></semantics></math>” height=”28″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2228%22%20width%3D%22110%22%20wrs%3Abaseline%3D%2222%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%26%23xAF%3B%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmenclose%20notation%3D%22top%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmenclose%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%3E.%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20notation%3D%22top%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmenclose%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’horizontalbf65417dcecc7f2b0006e’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMlJxIOAAAADMAAAATmNtYXCwg0j%2FAAABHAAAADRjdnQgAAcAAAAAAVAAAAACZ2x5ZuwE1kUAAAFUAAAAO2hlYWQNciGiAAABkAAAADZoaGVhBusXCAAAAcgAAAAkaG10eGjtB6sAAAHsAAAACGxvY2EAAYSYAAAB9AAAAAxtYXhwBLEEbgAAAgAAAAAgbmFtZReja%2F8AAAIgAAAByXBvc3QB9wD6AAAD7AAAACBwcmVwu5WEAAAABAwAAAAHAAACRwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAACOv8xEDev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACAAAAAEAAQAAQAAI6%2F%2F%2FwAAI6%2F%2F%2F9xSAAEAAAAAAAcAAAABAAABVQGrAasAAwAjGAGwBBCwATywARCwAtSwAhCwBTwAsAQQsAHUsAEQsADUMDERFSE1AasBq1ZWAAABAAAAAQAARVMXc18PPPUAAwQA%2F%2F%2F%2F%2F9Wt7tH%2F%2F%2F%2F%2F1a3u0QAAAAADAAMAAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2F%2FwMAAAEAAAAAAAAAAAAAAAAAAAACAyAAAAGrAAAAAAAAAAAAAAAAADsAAQAAAAIADQACAAAAAAACAIAEAAAAAAAEAABfAAAAAAAAABUBAgAAAAAAAAABAB4AAAAAAAAAAAACAA4AHgAAAAAAAAADADwALAAAAAAAAAAEAB4AaAAAAAAAAAAFABYAhgAAAAAAAAAGAA8AnAAAAAAAAAAIABwAqwABAAAAAAABAB4AAAABAAAAAAACAA4AHgABAAAAAAADADwALAABAAAAAAAEAB4AaAABAAAAAAAFABYAhgABAAAAAAAGAA8AnAABAAAAAAAIABwAqwADAAEECQABAB4AAAADAAEECQACAA4AHgADAAEECQADADwALAADAAEECQAEAB4AaAADAAEECQAFABYAhgADAAEECQAGAA8AnAADAAEECQAIABwAqwBIAG8AcgBpAHoAbwBuAHQAYQBsACAARgBvAG4AdABSAGUAZwB1AGwAYQByAE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAgAEgAbwByAGkAegBvAG4AdABhAGwAIABGAG8AbgB0AEgAbwByAGkAegBvAG4AdABhAGwAIABGAG8AbgB0AFYAZQByAHMAaQBvAG4AIAAxAC4AMEhvcml6b250YWxfRm9udABNAGEAdABoAHMAIABGAG8AcgAgAE0AbwByAGUAAAAAAwAAAAAAAAH0APoAAAAAAAAAAAAAAAAAAAAAAAAAALkH%2FwACjYUA)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%40font-face%7Bfont-family%3A’math105e3f444b77fd674ead956ad23’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAERjdnQgDVUNBwAAAWAAAAA6Z2x5ZoPi2VsAAAGcAAABcWhlYWQQC2qxAAADEAAAADZoaGVhCGsXSAAAA0gAAAAkaG10eE2rRkcAAANsAAAAEGxvY2EAHTwYAAADfAAAABRtYXhwBT0FPgAAA5AAAAAgbmFtZaBxlY4AAAOwAAABn3Bvc3QB9wD6AAAFUAAAACBwcmVwa1uragAABXAAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEADAAAAAIAAgAAgAAACsALgA9%2F%2F8AAAArAC4APf%2F%2F%2F9b%2F1P%2FGAAEAAAAAAAAAAAAAAVQDLACAAQAAVgAqAlgCHgEOASwCLABaAYACgACgANQAgAAAAAAAAAArAFUAgACrANUBAAErAAcAAAACAFUAAAMAA6sAAwAHAAAzESERJSERIVUCq%2F2rAgD%2BAAOr%2FFVVAw
-
Responses