Biology_Alevel_Ocr
-
4-1-communicable-diseases-disease-prevention-and-the-immune-system16 主题
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-1-2-transmission-of-communicable-pathogens
-
4-1-3-plant-defences-against-pathogens
-
4-1-4-non-specific-immune-responses
-
4-1-5-phagocytes
-
4-1-6-blood-cells
-
4-1-7-the-t-lymphocyte-response
-
4-1-8-the-b-lymphocyte-response
-
4-1-9-primary-and-secondary-immune-responses
-
4-1-10-antibodies
-
4-1-11-opsonins-agglutinins-and-anti-toxins
-
4-1-12-types-of-immunity
-
4-1-13-autoimmune-diseases
-
4-1-14-principles-of-vaccination
-
4-1-15-sources-of-medicine
-
4-1-16-antibiotics
-
4-1-1-common-pathogens-and-communicable-diseases
-
4-2-biodiversity10 主题
-
4-2-1-biodiversity
-
4-2-2-sampling-to-determine-biodiversity
-
4-2-3-practical-investigating-biodiversity-using-sampling
-
4-2-4-measuring-species-richness-and-species-evenness
-
4-2-5-simpsons-index
-
4-2-6-genetic-diversity
-
4-2-7-factors-affecting-biodiversity
-
4-2-8-reasons-for-maintaining-biodiversity
-
4-2-9-methods-of-maintaining-biodiversity
-
4-2-10-conservation-agreements
-
4-2-1-biodiversity
-
4-3-classification-and-evolution15 主题
-
4-3-1-classification-of-species
-
4-3-2-binomial-system
-
4-3-3-classification-of-the-three-domains
-
4-3-4-classification-of-the-five-kingdoms
-
4-3-5-classification-and-phylogeny
-
4-3-6-evidence-of-evolution
-
4-3-7-types-of-variation
-
4-3-8-standard-deviation
-
4-3-9-variation-t-test-method
-
4-3-10-variation-t-test-worked-example
-
4-3-11-spearmans-rank-correlation
-
4-3-12-adaptation
-
4-3-13-natural-selection
-
4-3-14-evolution-of-resistance
-
4-3-15-consequences-of-resistance
-
4-3-1-classification-of-species
-
5-1-communication-and-homeostasis4 主题
-
5-2-excretion10 主题
-
5-2-1-the-importance-of-excretion
-
5-2-2-the-mammalian-liver-structure
-
5-2-3-the-mammalian-liver-function
-
5-2-4-the-liver-under-the-microscope
-
5-2-5-the-mammalian-kidney-structure
-
5-2-6-the-mammalian-kidney-function
-
5-2-7-the-kidney-under-the-microscope
-
5-2-8-osmoregulation
-
5-2-9-kidney-failure
-
5-2-10-excretory-products-and-medical-diagnosis
-
5-2-1-the-importance-of-excretion
-
5-3-neuronal-communication9 主题
-
5-4-hormonal-communication4 主题
-
5-5-plant-and-animal-responses16 主题
-
5-5-1-plant-responses
-
5-5-2-investigating-phototropism-and-geotropism
-
5-5-3-plant-hormones
-
5-5-4-auxins-and-apical-dominance
-
5-5-5-gibberellin
-
5-5-6-practical-effect-of-plant-hormones-on-growth
-
5-5-7-commercial-use-of-plant-hormones
-
5-5-8-mammalian-nervous-system
-
5-5-9-the-human-brain
-
5-5-10-reflex-actions
-
5-5-11-coordination-of-responses
-
5-5-12-factors-affecting-heart-rate
-
5-5-13-investigating-factors-affecting-heart-rate
-
5-5-14-mammalian-muscle-structure
-
5-5-15-transmission-across-a-neuromuscular-junction
-
5-5-16-the-sliding-filament-model
-
5-5-1-plant-responses
-
5-6-photosynthesis10 主题
-
5-6-1-photosynthesis-and-respiration
-
5-6-2-chloroplast-structure-and-function
-
5-6-3-photosynthetic-pigments
-
5-6-4-practical-investigating-photosynthetic-pigments-with-chromatography
-
5-6-5-the-light-dependent-stage
-
5-6-6-using-the-products-of-the-light-dependent-reaction
-
5-6-7-the-light-independent-stage
-
5-6-8-uses-of-triose-phosphate
-
5-6-9-factors-affecting-the-rate-of-photosynthesis
-
5-6-10-practical-investigating-factors-affecting-the-rate-of-photosynthesis
-
5-6-1-photosynthesis-and-respiration
-
5-7-respiration14 主题
-
5-7-14-practical-respirometer
-
5-7-1-the-need-for-cellular-respiration
-
5-7-2-structure-of-the-mitochondrion
-
5-7-3-the-four-stages-in-aerobic-respiration
-
5-7-4-glycolysis
-
5-7-5-the-link-reaction
-
5-7-6-the-krebs-cycle
-
5-7-7-the-role-of-coenzymes
-
5-7-8-oxidative-phosphorylation
-
5-7-9-anaerobic-respiration
-
5-7-10-energy-yield-of-aerobic-vs-anaerobic-respiration
-
5-7-11-practical-investigating-the-rate-of-respiration
-
5-7-12-respiratory-substrates
-
5-7-13-respiratory-quotient-rq
-
5-7-14-practical-respirometer
-
6-1-cellular-control7 主题
-
6-2-patterns-of-inheritance13 主题
-
6-2-1-key-terms-in-genetics
-
6-2-2-variation-phenotype
-
6-2-3-variation-sexual-reproduction
-
6-2-4-predicting-inheritance-monohybrid-crosses
-
6-2-5-predicting-inheritance-dihybrid-crosses
-
6-2-6-predicting-inheritance-identifying-linkage
-
6-2-7-predicting-inheritance-identifying-epistasis
-
6-2-8-predicting-inheritance-chi-squared-test
-
6-2-9-continuous-and-discontinuous-variation
-
6-2-10-factors-affecting-evolution
-
6-2-11-the-hardy-weinberg-principle
-
6-2-12-isolation-and-speciation
-
6-2-13-artificial-selection
-
6-2-1-key-terms-in-genetics
-
6-3-manipulating-genomes11 主题
-
6-3-1-dna-sequencing
-
6-3-2-comparing-genomes
-
6-3-3-non-coding-dna-and-regulatory-genes
-
6-3-4-synthetic-biology
-
6-3-5-polymerase-chain-reaction
-
6-3-6-electrophoresis
-
6-3-7-dna-profiling
-
6-3-8-genetic-engineering
-
6-3-9-genetic-engineering-techniques
-
6-3-10-uses-of-genetic-engineering
-
6-3-11-gene-therapy
-
6-3-1-dna-sequencing
-
6-4-cloning-and-biotechnology14 主题
-
6-4-1-natural-clones-in-plants
-
6-4-2-producing-cuttings
-
6-4-3-production-of-artificial-clones-in-plants
-
6-4-4-uses-of-plant-cloning
-
6-4-5-natural-clones-in-animals
-
6-4-6-production-of-artificial-clones-in-animals
-
6-4-7-uses-of-animal-cloning
-
6-4-8-microorganisms-and-biotechnology
-
6-4-9-microorganisms-and-food-production
-
6-4-10-culturing-microorganisms
-
6-4-11-batch-and-continuous-fermentation
-
6-4-12-standard-growth-curve-of-microorganisms
-
6-4-13-factors-affecting-the-growth-of-microorganisms
-
6-4-14-immobilised-enzymes-in-biotechnology
-
6-4-1-natural-clones-in-plants
-
6-5-ecosystems7 主题
-
6-6-populations-and-sustainability6 主题
-
1-1-practical-skills-written-assessment7 主题
-
1-2-practical-skills-endorsement-assessment16 主题
-
1-2-1-practical-ethical-use-of-organisms
-
1-2-2-practical-aseptic-techniques
-
1-2-3-practical-dissection-of-gas-exchange-surfaces-in-fish-and-insects
-
1-2-4-drawing-cells-from-blood-smears
-
1-2-5-practical-investigating-biodiversity-using-sampling
-
1-2-6-practical-data-loggers-and-computer-modelling
-
1-2-7-practical-investigating-the-rate-of-diffusion
-
1-2-8-practical-investigating-water-potential
-
1-2-9-practical-factors-affecting-membrane-structure-and-permeability
-
1-2-10-biochemical-tests-reducing-sugars-and-starch
-
1-2-11-biochemical-tests-lipids
-
1-2-12-biochemical-tests-proteins
-
1-2-13-chromatography
-
1-2-14-serial-dilutions
-
1-2-15-practical-investigating-the-rate-of-transpiration
-
1-2-16-practical-using-a-light-microscope
-
1-2-1-practical-ethical-use-of-organisms
-
2-1-cell-structure9 主题
-
2-2-biological-molecules17 主题
-
2-2-1-properties-of-water
-
2-2-2-monomers-and-polymers
-
2-2-3-monosaccharides
-
2-2-4-the-glycosidic-bond
-
2-2-5-polysaccharides
-
2-2-6-biochemical-tests-reducing-sugars-and-starch
-
2-2-7-lipids-and-ester-bonds
-
2-2-8-lipids-structure-and-function
-
2-2-9-biochemical-tests-lipids
-
2-2-10-amino-acids-and-peptide-bonds
-
2-2-11-protein-structure
-
2-2-12-globular-proteins
-
2-2-13-fibrous-proteins
-
2-2-14-inorganic-ions
-
2-2-15-biochemical-tests-proteins
-
2-2-16-finding-the-concentration-of-a-substance
-
2-2-17-chromatography
-
2-2-1-properties-of-water
-
2-3-nucleotides-and-nucleic-acids8 主题
-
2-4-enzymes9 主题
-
2-4-1-the-role-of-enzymes
-
2-4-2-enzyme-action
-
2-4-3-enzyme-activity-ph
-
2-4-4-enzyme-activity-temperature
-
2-4-5-enzyme-activity-enzyme-concentration
-
2-4-6-enzyme-activity-substrate-concentration
-
2-4-7-enzyme-activity-enzyme-inhibitors
-
2-4-8-coenzymes-cofactors-and-prosthetic-groups
-
2-4-9-practical-measuring-enzyme-activity
-
2-4-1-the-role-of-enzymes
-
2-5-biological-membranes9 主题
-
2-5-1-the-cell-surface-membrane
-
2-5-2-membrane-structure-and-permeability
-
2-5-3-diffusion-and-facilitated-diffusion
-
2-5-4-practical-investigating-the-rate-of-diffusion
-
2-5-5-active-transport
-
2-5-6-endocytosis-and-exocytosis
-
2-5-7-osmosis
-
2-5-8-osmosis-in-animal-and-plant-cells
-
2-5-9-practical-investigating-water-potential
-
2-5-1-the-cell-surface-membrane
-
2-6-cell-division-cell-diversity-and-cellular-organisation11 主题
-
2-6-1-the-cell-cycle
-
2-6-2-the-stages-of-mitosis
-
2-6-3-identifying-mitosis-in-plant-cells
-
2-6-4-the-significance-of-mitosis
-
2-6-5-the-stages-of-meiosis
-
2-6-6-the-significance-of-meiosis
-
2-6-7-specialised-cells
-
2-6-8-the-organisation-of-cells
-
2-6-9-stem-cells
-
2-6-10-stem-cells-in-animals-and-plants
-
2-6-11-the-use-of-stem-cells
-
2-6-1-the-cell-cycle
-
3-1-exchange-surfaces7 主题
-
3-2-transport-in-animals12 主题
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-2-2-circulatory-systems
-
3-2-3-blood-vessels
-
3-2-4-tissue-fluid
-
3-2-5-the-mammalian-heart
-
3-2-6-practical-mammalian-heart-dissection
-
3-2-7-the-cardiac-cycle
-
3-2-8-cardiac-output
-
3-2-9-heart-action-initiation-and-control
-
3-2-10-electrocardiograms-ecgs
-
3-2-11-the-role-of-haemoglobin
-
3-2-12-adult-and-fetal-haemoglobin
-
3-2-1-the-need-for-transport-systems-in-animals
-
3-3-transport-in-plants11 主题
-
3-3-1-the-need-for-transport-systems-in-plants
-
3-3-2-the-xylem-and-phloem
-
3-3-3-the-xylem
-
3-3-4-the-phloem
-
3-3-5-transverse-sections-stems-roots-and-leaves
-
3-3-6-the-process-of-transpiration
-
3-3-7-transpiration-in-plants
-
3-3-8-practical-investigating-the-rate-of-transpiration
-
3-3-9-translocation
-
3-3-10-the-mass-flow-hypothesis
-
3-3-11-the-adaptations-of-xerophytic-and-hydrophytic-plants
-
3-3-1-the-need-for-transport-systems-in-plants
2-2-7-lipids-and-ester-bonds
Lipids
Lipids
-
Lipids are macromolecules that contain carbon, hydrogen and oxygen atoms. Unlike carbohydrates, lipids contain a lower proportion of oxygen
-
Lipids are non-polar and hydrophobic (insoluble in water)
-
There are two groups of lipid that you need to know:
-
Triglycerides (the main component of fats and oils)
-
Phospholipids
-
-
Lipids play an important role in energy yield, energy storage, insulation and hormonal communication
Triglycerides
-
Triglycerides are non-polar, hydrophobic molecules
-
The monomers that make up triglycerides are glycerol and fatty acids
-
Glycerol is an alcohol (an organic molecule that contains a hydroxyl group bonded to a carbon atom)
-
Fatty acids contain a methyl group at one end of a hydrocarbon chain known as the R group (chains of hydrogens bonded to carbon atoms, typically 4 to 24 carbons long) and at the other is a carboxyl group
-
The shorthand chemical formula for a fatty acid is RCOOH
-
-
Fatty acids can vary in two ways:
-
Length of the hydrocarbon chain (R group)
-
The fatty acid chain (R group) may be saturated (mainly in animal fat) or unsaturated (mainly vegetable oils, although there are exceptions e.g. coconut and palm oil)
-
-
Unsaturated fatty acids can be mono or poly-unsaturated
-
If H atoms are on the same side of the double bond they are cis-fatty acids and are metabolised by enzymes
-
If H atoms are on opposite sides of the double bond they are trans-fatty acids and cannot form enzyme-substrate complexes, and therefore are not metabolised. ‘Trans-fat’ is linked with coronary heart disease
-


Examples of different types of fatty acids with the functional groups and presence of double bonds highlighted
Phospholipids
-
Phospholipids are a type of lipid, therefore they are formed from the monomers glycerol and fatty acids
-
Unlike triglycerides, there are only two fatty acids bonded to a glycerol molecule in a phospholipid as one has been replaced by a phosphate ion (PO43-)
-
As the phosphate is polar it is soluble in water (hydrophilic)
-
The fatty acid ‘tails’ are non-polar and therefore insoluble in water (hydrophobic)

Phospholipids are the major components of cell surface membranes. They have fatty acid tails that are hydrophobic and a phosphate head, that is hydrophilic, attached to a glycerol molecule.
-
Phospholipids are amphipathic (they have both hydrophobic and hydrophilic parts)
-
As a result of having hydrophobic and hydrophilic parts, phospholipid molecules form monolayers or bilayers in water

In the presence of water due to the hydrophobic and hydrophilic parts phospholipids will form monolayers or bilayers
Phospholipids v Triglycerides Table

Examiner Tips and Tricks
Ensure that you are familiar with the structure of a triglyceride and that you can recognise whether the fatty acids are saturated or unsaturated and know the difference between phospholipids and triglycerides!
The Ester Bond
-
Triglycerides contain three ester bonds between the fatty acids and the glycerol molecule
-
An ester bond forms when a hydroxyl (-OH) group from the glycerol bonds with the carboxyl (-COOH) group of the fatty acid
-
An H from glycerol combines with an OH from the fatty acid to make water
-
The formation of an ester bond is a condensation reaction
-
For each ester bond formed a water molecule is released
-
Three fatty acids join to one glycerol molecule to form a triglyceride
-
Therefore for one triglyceride to form, three water molecules are released
-
-
The ester bonds can break during breakdown of the triglyceride molecule (e.g. during digestion)
-
This process is a hydrolysis reaction and three water molecules are taken in the reverse reaction to the condensation
-
