Back to 课程

Biology_A-level_Aqa

0% Complete
0/0 Steps
  1. 1-biological-molecules

    1-1-biological-molecules-carbohydrates
    11 主题
  2. 1-2-biological-molecules-lipids
    3 主题
  3. 1-3-biological-molecules-proteins
    5 主题
  4. 1-4-proteins-enzymes
    12 主题
  5. 1-5-nucleic-acids-structure-and-dna-replication
    8 主题
  6. 1-6-atp-water-and-inorganic-ions
    4 主题
  7. 2-cell-structure
    2-1-cell-structure
    7 主题
  8. 2-2-the-microscope-in-cell-studies
    4 主题
  9. 2-3-cell-division-in-eukaryotic-and-prokaryotic-cells
    8 主题
  10. 2-4-cell-membranes-and-transport
    7 主题
  11. 2-5-cell-recognition-and-the-immune-system
    7 主题
  12. 2-6-vaccines-disease-and-monoclonal-antibodies
    6 主题
  13. 3-exchange-and-transport
    3-1-adaptations-for-gas-exchange
    6 主题
  14. 3-2-human-gas-exchange
    10 主题
  15. 3-3-digestion-and-absorption
    5 主题
  16. 3-4-mass-transport-in-animals
    6 主题
  17. 3-5-the-circulatory-system-in-animals
    8 主题
  18. 3-6-mass-transport-in-plants
    6 主题
  19. 4-genetics-variation-and-interdependence
    4-1-dna-genes-and-chromosomes
    7 主题
  20. 4-2-dna-and-protein-synthesis
    6 主题
  21. 4-3-genetic-diversity-mutations-and-meiosis
    7 主题
  22. 4-4-genetic-diversity-and-adaptation
    6 主题
  23. 4-5-species-and-taxonomy
    4 主题
  24. 4-6-biodiversity
    9 主题
  25. 5-energy-transfers-in-and-between-organisms-a-level-only
    5-1-photosynthesis-a-level-only
    5 主题
  26. 5-2-respiration-a-level-only
    7 主题
  27. 5-3-energy-and-ecosystems-a-level-only
    9 主题
  28. 5-4-nutrient-cycles-a-level-only
    4 主题
  29. 6-organisms-respond-to-changes-in-their-environments-a-level-only
    6-1-response-to-stimuli-a-level-only
    12 主题
  30. 6-2-nervous-coordination-a-level-only
    10 主题
  31. 6-3-skeletal-muscles-a-level-only
    6 主题
  32. 6-4-homeostasis-a-level-only
    11 主题
  33. 7-genetics-populations-evolution-and-ecosystems-a-level-only
    7-1-inheritance-a-level-only
    6 主题
  34. 7-2-populations-a-level-only
    3 主题
  35. 7-3-evolution-a-level-only
    5 主题
  36. 7-4-populations-in-ecosystems-a-level-only
    7 主题
  37. 8-the-control-of-gene-expression-a-level-only
    8-1-genetic-mutations-a-level-only
    2 主题
  38. 8-2-regulation-of-gene-expression-a-level-only
    11 主题
  39. 8-3-using-genome-projects-a-level-only
    4 主题
  40. 8-4-gene-technologies-a-level-only
    13 主题
  41. exam-guidance-and-skills
    essay-guidance
    3 主题
课 Progress
0% Complete

Genome sequencing projects

  • A genome contains all of the genes within an organism

  • Advances in technology have allowed scientists to map and sequence the genes within an organism’s genome

  • Genome sequencing can aid in the understanding of gene function and interaction

  • Sequencing projects have read the genomes of a wide range of organisms, from flatworms to humans

  • A genome project works by collecting DNA samples from many individuals of a species. These DNA samples are then sequenced and compared to create a reference genome

    • More than one individual is used to create the reference genome, as one organism may have anomalies/mutations in its DNA sequence that are atypical of the species

The Human Genome Project

  • The Human Genome Project (HGP) began in 1990 as an international, collaborative research programme

  • It was publicly funded so that there would be no commercial interests or influence, the results were also would be made publicly available

    • As a result, the data can be shared rapidly between researchers

    • The information discovered could also be used by any researcher and so maximised for human benefit

  • DNA samples were taken from multiple people around the world, sequenced and used to create a reference genome

  • By 2003 the human genome had been sequenced to 99.9% accuracy

  • The finished genome was over 3 billion base pairs long but contained only about 25,000 genes

    • This was much less than expected

  • Following the success of sequencing the human genome scientists have now moved onto sequencing the human proteome

    • The proteome is all of the proteins that can be produced by a cell

    • Although there are roughly 25,000 genes within the genome there are many more proteins within the proteome. This may is due to processes such as alternative splicing and post-translational modification

  • There is also work being done on the human epigenome

    • These are the inherited changes in DNA that do not involve a change in DNA base sequence